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1 Introduction

In this paper, we consider the weak form of a system of elliptic (n×n) operators
A in divergence form induced by the tensor A for a function u : Ω → Cn (or
Rn):

(Au)1 = −
d∑

α,β=1

n∑
j=1

∂α
(
A1,j
α,β∂βuj

)
...

...
...

(Au)n = −
d∑

α,β=1

n∑
j=1

∂α
(
An,jα,β∂βuj

)
.

(1)

Each equation, for j ∈ {1, . . . , n}, in this system is subject to possibly mixed
boundary conditions with a Dirichlet boundary part Dj and we set D :=

×nj=1Dj . Precise assumptions on A, the domain Ω, and the Dirichlet boundary
parts Dj are given below in Assumptions 1 and 2.

As a motivation for our results, let us assume for the moment that the oper-
ator A defines an isomorphism between the Sobolev Hilbert spaces H1

D(Ω)→
H−1D (Ω), as it can be asserted by the notorious Lax-Milgram theorem in many
cases. It is known under mild assumptions on Ω and D that if Ai,jα,β ∈ L∞(Ω),
then A remains an isomorphism for small perturbations in the integrability
scale, i.e., there exists ε > 0 such that the mapping

A : H1,p
D (Ω)→ H−1,pD (Ω)

remains an isomorphism for all p satisfying 2− ε ≤ p ≤ 2 + ε, see, e.g., [12,13]
or [14].

We will show that such a result is also true on the differentiability scale:
Indeed, we prove that if A is a multiplier on Hε for some 0 < ε < 1

2 , then there
exists ϑ > 0 such that the mapping

A : H1+θ
D (Ω)→ Hθ−1D (Ω)

is still an isomorphism for any θ satisfying −ϑ ≤ θ ≤ ϑ. Moreover, the norm
of the inverse of A is uniform in its coercivity constant and the bound on
the multiplier norm; in particular, it does not depend explicitly on the actual
multiplier at hand. Similar results have been obtained by Jochmann in [15]
for the case of a scalar elliptic problem on a domain with a piecewise smooth
boundary. Our work can therefore be seen as an extension of these results
to elliptic systems, while allowing much less regular geometries for Ω and
the boundary parts Dj . We note that the required multiplier property for A
is in particular satisfied if A is σ-Hölder-continuous for σ > ε or if A is a
characteristic function of an open subset of Ω with locally finite perimeter.

Such results are interesting, firstly because they provide a sharp maximal
elliptic regularity result for the abstract equation Au = f in Hθ−1D (Ω). This
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allows for instance to obtain certain improved convergence rates in the anal-
ysis of H1-discretization errors for such equations, which is possible only if a
gap in differentiability is present, see our example in Section 7. Further, the
fact that the norm of the inverse of A is uniform for all multipliers with a cer-
tain coercivity constant and multiplier norm makes the result also attractive
to use in a nonlinear elliptic setting via fixed-point techniques. Finally, the
knowledge that H1+θ

D (Ω) is the domain of A over Hθ−1D (Ω) for all coefficient
functions in a certain class is a very valuable information when aiming to treat
nonautonomous time-dependent problems of the form

u′(t) + A(t)u(t) = f(t) in Hθ−1D (Ω), u(0) = u0,

see, e.g., [1,22], or even for quasilinear equations such as

u′(t) + A(u(t))u(t) = F (u(t)) in Hθ−1D (Ω), u(0) = u0.

We explain the latter in some more detail in Section 8.
Throughout the paper, the considered Banach spaces are in general com-

plex vector spaces. By ∼= we understand that two normed spaces are equal up
to equivalent norms. Moreover, the restriction of f : U → C to Λ ⊆ U will be
denoted by f�Λ and we use Br(x) for the ball of radius r around x in Rd.

The rest of the paper is structured as follows: We will start by stating our
main result in Section 2 together with the notation of the subsequent sections.
In Section 3, we will give the details on the assumed regularity of the domain:
we assume that (the closure of) the non-Dirichlet boundary parts admit bi-
Lipschitz boundary charts and allow the Dirichlet parts of the domain to be
(d − 1)-sets. In Section 4, we will define the Bessel potential function spaces
needed in the statement of our result. The collection of preliminaries ends in
Section 5, where we briefly introduce the concept of a multiplier space and
provide some more accessible examples for when a coefficient function is in
fact a multiplier. After these preparations, we come to the proof of the main
result in Section 6. We conclude the paper by applications of our results to a
phase-field fracture/damage model in Section 7 and to quasilinear equations
in Section 8.

2 Main result

We first give our main result. All occurring spaces and the notion of a multiplier
are formally introduced and defined below (cf. Definitions 2, 3 and 4).

Assumption 1 For i, j ∈ {1, . . . , n}, each matrix Ai,j is a (d×d) matrix with
Ai,jα,β ∈ L∞(Ω) for α, β ∈ {1, . . . , d}.

To formulate the weak form of the elliptic system operator (1), let

H1
D(Ω) :=

n∏
j=1

H1
Dj (Ω),
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and let H−1D (Ω) be the anti-dual space of H1
D(Ω). For a tensor A satisfying

Assumption 1, we define the form a : H1
D(Ω)×H1

D(Ω)→ C and the divergence-
gradient system operator −∇ ·A∇ : H1

D(Ω)→ H−1D (Ω) by〈
−∇ ·A∇u, v

〉
:= a(u, v)

:=

n∑
i,j=1

∫
Ω

(
Ai,j∇uj) · ∇vi dx for u, v ∈ H1

D(Ω).
(2)

We extend this slightly by defining −∇·A∇+γ : H1
D(Ω)→ H−1D (Ω) for γ ≥ 0

by 〈(
−∇ ·A∇+ γ

)
u, v
〉

:=
〈
−∇ ·A∇u, v

〉
+

n∑
j=1

∫
Ω

γujvj dx

and formulate our main result as follows:

Theorem 1 Let Assumptions 1 and 2 be satisfied and suppose that the sys-
tem (1) is elliptic in the sense that it satisfies a Gårding inequality, i.e., there
exist λ > 0 and µ ≥ 0 such that

Re
(
a(u, u)

)
≥

n∑
i=1

λ‖∇ui‖2L2(Ω;Cd) − µ‖ui‖
2
L2(Ω) for all u ∈ H1

D(Ω).

Assume further that each matrix Ai,j is a multiplier on Hε(Ω)d for some
0 < ε < 1

2 . Then there exist γ ≥ 0 and 0 < δ ≤ ε such that

−∇ ·A∇+ γ ∈ Liso

(
Hθ+1
D (Ω);Hθ−1D (Ω)

)
for all |θ| < δ, (3)

i.e., −∇·A∇+γ is a topological isomorphism between Hθ+1
D (Ω) and Hθ−1D (Ω)

for every −δ < θ < δ. Both the size of δ and the norm of the inverse of −∇ ·
A∇+γ are uniformly bounded w.r.t. the multiplier norm of A, the coefficients
in the Gårding inequality and γ.

Remark 1 (i) The need for the perturbation γ ≥ 0 in Theorem 1 is due to
the possibility that 0 might be an eigenvalue of A. If this is not the case,
γ = 0 can be chosen. In particular, γ = 0 is allowed if µ = 0 and if a
Poincaré inequality holds true for H1

D(Ω). The latter is already satisfied
for D 6= ∅ in our geometric setting as given in Section 3 below, cf. [3,
Rem. 3.4].

(ii) We give sufficient conditions for the matrix functions Ai,j to be multipli-
ers on Hε(Ω)d in Lemma 1 below. A particular case is when Ai,jαβ ∈ Cσ(Ω)
for some ε < σ < 1 and all α, β ∈ {1, . . . , d}, where Cσ(Ω) is the space
of σ-Hölder continuous functions on Ω. This also implies that C

1
2 (Ω) is

always a suitable multiplier space for Theorem 1. Note however that a
multiplier need not necessarily be continuous, see Remark 5.
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(iii) We consider the Gårding inequality as the adequate abstract tool to
enforce coercivity in our context since it is known that if A satisfies the
Legendre-Hadamard condition and the coefficient functions are uniformly
continuous (cf. the previous point), then the Gårding inequality is indeed
satisfied at least for D = ∅ (see [8, Ch. 3.4.3]). Coercivity of system
operators −∇ ·A∇ in the setting D 6= ∅ without a very strong ellipticity
assumption in the form of a Legendre condition is both an interesting
and (very) difficult topic, see, e.g., [24,28] and the references therein.

Theorem 1 yields the following corollary:

Corollary 1 In the situation of Theorem 1, let f ∈ Hθ−1D (Ω) for some 0 <
θ < δ. Then the elliptic system

−∇ ·A∇u+ γu = f in Hθ−1D (Ω) (4)

has a unique solution u ∈ Hθ+1
D (Ω) satisfying

‖u‖Hθ+1
D (Ω) ≤ C‖f‖Hθ−1

D (Ω)

for some constant C ≥ 0 independent of f and uniform in the multiplier norm
of A, the constants in the Gårding inequality and γ. Moreover, for all 0 < η < θ
there exist p > 2 and C• ≥ 0 such that u ∈ H1+η,p

D (Ω) and

‖u‖H1+η,p
D (Ω) ≤ C

•‖f‖Hθ−1
D (Ω)

where C• is uniform in the same quantities as C is.

Remark 2 A particular case for f = (f1, . . . , fn) being in Hθ−1D (Ω) is when we
have fj ∈ Lqj (Ω) for qj ≥ 2d

d+2(1−θ) . This follows from the embedding

Lqj (Ω) ↪→ Hθ−1
Dj

(Ω) if qj ≥
2d

d+ 2(1− θ)

which can be inferred from the extension property for H1−θ
Dj

(Ω) as in [7,

Thm. 5.1], the embedding H1−θ(Rn) ↪→ Lq
′
j (Rn) in Rn [25, Ch. 2.8.1], and

a duality argument; see Section 4 for the formal definitions of the function
spaces.

3 Assumptions on the domain

We formulate the assumptions on the spatial domain Ω ⊂ Rd and its boundary.
As part of the assumptions on Theorem 1, these are supposed to be valid in
all of the following. A preliminary definition we need is the following:
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Definition 1 ((d − 1)-set) Let F ⊂ Rd be a Borel set. We say that F is a
(d − 1)-set or that F satisfies the Ahlfors-David condition if there is c ≥ 1
such that

c−1rd−1 ≤ Hd−1
(
F ∩Br(x)

)
≤ crd−1 for all x ∈ F, 0 < r ≤ 1,

where Hd−1 is the (d− 1)-dimensional Hausdorff measure.

The assumptions on Ω and Dj for j ∈ {1, . . . , n} are then as follows, where
we set D :=

⋂n
j=1Dj :

Assumption 2 The set Ω ⊂ Rd is a bounded domain and for each j ∈
{1, . . . , n}, the set Dj ⊆ ∂Ω is either empty or a closed (d− 1)-set. For every
point x ∈ ∂Ω \D there are Lipschitz boundary charts available, that is, there
exists an open neighborhood Ux of x and a bi-Lipschitz map φx : Ux → (−1, 1)d

such that φx(x) = 0 and

φx(Ux ∩Ω) =
{

x ∈ (−1, 1)d : xd < 0
}
,

φx(Ux ∩ ∂Ω) =
{

x ∈ (−1, 1)d : xd = 0
}
.

Remark 3 (i) ForD = ∅, the assumptions on Ω fall back to that of a classical
Lipschitz domain (cf. [11]). On the other side of the spectrum, for D =
∂Ω, so pure Dirichlet conditions for every equation in the system (1), we
do not require local descriptions of ∂Ω by boundary charts at all.

(ii) If Ω ∪ Dj is regular in the sense of Gröger (cf. [12,13]) for some j ∈
{1, . . . , n}, then Assumption 2 is already satisfied. Indeed, in this case
Dj is already a (d − 1)-set, and there are already bi-Lipschitz charts
available for the whole ∂Ω, so Ω is again a Lipschitz domain. This follows
from the facts that the concept of Gröger requires that Dj ⊇ D is also
described by local bi-Lipschitz charts as ∂Ω \D is in Assumption 2, that
such a local bi-Lipschitz description of Dj implies that Dj is a (d−1)-set
by [16, Ch. II.1.1, Ex. 1], and that finite unions of (d− 1)-sets are again
(d − 1)-sets. Clearly, Assumption 2 is also satisfied if Ω ∪Dj is regular
in the sense of Gröger for every j ∈ {1, . . . , n}.

(iii) With the same argument as in the previous point, we find that under
Assumption 2, the whole boundary ∂Ω is always a (d− 1)-set.

4 Definitions and basics

We move to exact definitions of the fundamental function spaces. Here, we
mostly work only with the scalar-valued spaces Hs,p

F (Ω) for (d − 1)-sets F
satisfying D ⊆ F ⊆ ∂Ω since their properties translate to n-fold products of
such spaces immediately. Note that under Assumption 2, every Dj is a valid
choice for such F , as is ∂Ω by Remark 3 iii.
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Definition 2 (Bessel potential spaces) Let 1 < p <∞ and 1
p < s < 1+ 1

p ,
and consider a (d− 1)-set F such that D ⊆ F ⊆ ∂Ω. Denote by Hs,p(Rd) the
classical Bessel potential spaces, cf. [25, Ch. 2.3.1/Thm. 2.3.3]. Then we make
the following definitions:

(i) Set

Hs,p
F (Rd) :=

{
f ∈ Hs,p(Rd) :

lim
r↘0

1

|Br(x)|

∫
Br(x)

f(y) dy = 0 for Hd−1-a.e. x ∈ F
}

with Hs
F (Rd) := Hs,2

F (Rd) and ‖ · ‖Hs,pF (Rd) = ‖ · ‖Hs,p(Rd).
(ii) Further, set Hs,p

F (Ω) :=
{
f�Ω : f ∈ Hs,p

F (Rd)
}
, equipped with the factor

space norm

‖f‖Hs,pF (Ω) := inf
{
‖g‖Hs,p(Rd) : g ∈ Hs,p

F (Rd), g�Ω = f
}
.

We set, again, Hs
F (Ω) := Hs,2

F (Ω), and for F = ∅, we write Hs,p(Ω) :=
Hs,p
∅ (Ω).

(iii) Denote by H−sF (Rd) and H−sF (Ω) the space of antilinear continuous func-
tionals acting on Hs

F (Rd) and Hs
F (Ω), respectively. We agree that the

convention H−s(Ω) := H−s∅ (Ω) still applies.
(iv) For Λ ∈ {Ω,Rd} andDj from Assumption 2, setHs,pD (Λ) :=

∏n
j=1 Hs,p

Dj
(Λ),

with all the previous conventions for p = 2, and letH−sD (Λ) be the space of
continuous antilinear functionals on HsD(Λ), so H−sD (Λ) :=

∏n
j=1 H−sDj (Λ).

Remark 4 (i) For 1 ≤ s < 1+ 1
p , it is easy to see that Hs,p

F (Rd) = H1,p
F (Rd)∩

Hs,p(Rd) and that accordingly Hs,p
F (Ω) ⊆ H1,p

F (Ω) ∩Hs,p(Ω). If there
exists an extension operator E which maps H1,p

F (Ω) into H1,p
F (Rd) and

Hs,p(Ω) into Hs,p(Rd) at the same time such that Ef�Ω = f , then the
reverse inclusion and thus

Hs,p
F (Ω) = H1,p

F (Ω) ∩Hs,p(Ω)

follows. A particular case in which this extension property for Ω is
satisfied is when Ω ∪ Dj is regular in the sense of Gröger for some
j ∈ {1, . . . , n} (cf. Remark 3 (ii)) because then Ω is a Lipschitz do-
main for which the Hs,p-extension property is classical ([9, Thm. 7.25]),
and the preservation of the zero trace on F for the H1,p-extension follows
as in [6, Cor. 2.2.13].

(ii) Many authors commonly use Hs
0(Ω) instead of Hs

∂Ω(Ω) and H−1(Ω) in-
stead of H−1∂Ω(Ω). We feel that while this is adequate as long as only one
fixed part of the boundary, e.g. F = ∂Ω, is considered, a more careful
notation is needed in view of the importance of both the sets Dj and
∂Ω.
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The rather abstract definition of H1
F (Ω) turns out to be equivalent to

the classical Sobolev space with partially vanishing trace W1,2
F (Ω) which we

formally define as follows.

Definition 3 (Sobolev spaces with partially vanishing trace) Let F be
a (d − 1)-set satisfying D ⊆ F ⊆ ∂Ω and let Λ ⊆ Rd be a domain. Then we
set

C∞F (Λ) :=
{
f�Λ : f ∈ C∞c (Rd), supp f ∩ F = ∅

}
and

W1,2
F (Λ) := C∞F (Λ)

‖·‖W1,2(Λ)

for

‖f‖W1,2(Λ) :=

(∫
Λ

|f |2 + ‖∇f‖22 dx

) 1
2

.

Proposition 1 ([7, Cor. 3.8]) Let F be a (d−1)-set satisfying D ⊆ F ⊆ ∂Ω.
Then there holds W1,2

F (Ω) ∼= H1
F (Ω).

Using Proposition 1, we easily verify that −∇ ·A∇ as in (2) is indeed well
defined as an operator from H1

D(Ω) to H−1D (Ω) under Assumption 1.

5 Multipliers

We finally turn to the notion of a multiplier. In the present case, the following
definition is sufficient:

Definition 4 (Multiplier) Let X and Y be Banach spaces whose elements
are functions on a common domain of definition Λ. We say that Y is amultiplier
space of X if for every ρ ∈ Y the pointwise multiplication operator Tρ defined
by (Tρf)(x) := ρ(x)f(x) for x ∈ Λ is a continuous linear operator from X into
itself. In this case, the functions ρ ∈ Y are called multipliers for X.

We give sufficient conditions on when a matrix function is in fact a multi-
plier on spaces of the type Hε(Ω)d for 0 < ε < 1

2 , as required in Theorem 1.
We do so using Besov spaces Bsp,q(Ω) including those of non-standard type
p =∞. For 0 < s < 1 and q =∞, the latter coincide with the Hölder spaces,
see [26]. See also [25] and or [23] for the definitions of the Besov space and
more.

Clearly, for a matrix-valued function S : Ω → Cd×d to be a multiplier on
Hε(Ω)d it is sufficient if every component function Sα,β for α, β ∈ {1, . . . , d}
is a multiplier on Hε(Ω) alone. We thus just give conditions for this basing
on [23] and [26].

Lemma 1 Let 0 < ε < 1
2 be given. Then Bεd(1+η)/ε,2(Ω) and Cσ(Ω) are mul-

tiplier spaces for Hε(Ω) for every 0 < η ≤ ∞ and ε < σ < 1.
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Proof The results from [23] and [26] in the following proof are originally stated
only for function spaces on Rd. The occurring function spaces on Ω are defined
as the restrictions to Ω of the ones on Rd (cf. Definition 2) which however
allows to transfer the results from Rd to Ω by considering functions in the
function spaces on Rd whose restriction is the function of interest defined on
Ω. For the Hölder spaces, recall that there is the McShane-Whitney extension
operator [19].

The multiplier property for Bεd(1+η)/ε,2(Ω) for 0 < η ≤ ∞ is proven in [23,
Thm. 2, Ch. 4.4.4]. Please note here that Hs(Ω) = Fs2,2(Ω) = Bs2,2(Ω). For the
case η = ∞, so Bε∞,2(Ω) as a multiplier space, see also [23, Ch. 4.7.1]. The
assertion for the Hölder spaces now follows from the embedding

Bσ∞,∞(Ω) ↪→ Bε∞,2(Ω) for σ > ε (5)

together with [26, Thm. 4] from which we have

Cσ(Ω) ∼= Bσ∞,∞(Ω) for 0 < σ < 1.

Note that the embedding in (5) is not explicitly stated in [26], but follows
immediately from the definition of the Besov space there, see [26, p. 77/78],
cf. also [23, Ch. 2.2.1].

See also [15, Lem. 2] for a similar multiplier result involving σ-Hölder func-
tions for σ > ε.

Remark 5 Let us point out once more that the conditions in Lemma 1 are
merely sufficient and in no way necessary. In fact, due to the embeddings

Bεd(1+η)/ε,2(Ω) ↪→ C
εη

1+η (Ω) and Bε∞,2(Ω) ↪→ Bε∞,∞(Ω) ∼= Cε(Ω),

we see that the given multipliers are all at least Hölder continuous, and
Bε∞,2(Ω) lies in fact between Cσ(Ω) and Cε(Ω) for any 0 < ε < σ, recall (5).
But it is also known that the—clearly discontinuous—characteristic function
χΞ for an open set Ξ ⊂ Ω with locally finite perimeter is also a multiplier on
Hε(Ω) whenever |ε| < 1

2 , see [23, p. 214ff]. A general intrinsic characterization
of multipliers on Hε(Ω) in terms of usual function spaces seems not to be
available. We refer to [23,18] and related works, see also [17, Sect. 5].

6 Proof of the main results

The proof of Theorem 1 rests on the following fundamental theorem by Šnĕı-
berg [27], cf. also [6, Ch. 1.3.5]. For the notions from interpolation theory we
refer to [25, Ch. 1.2, 1.9].

Theorem 2 (Šnĕıberg stability theorem) Let (X0, X1) and (Y0, Y1) be in-
terpolation couples of Banach spaces and let T be a continuous linear operator
compatible with that interpolation couple. Then the set{

θ ∈ (0, 1) : T ∈ Liso

(
[X0, X1]θ; [Y0, Y1]θ

)}
(6)

is open.
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Remark 6 Given a number ϑ which is an element of the set (6) in Theorem 2,
there exist estimates on the size of the open set (6), see [6, Ch. 1.3.5]. These
show that the size depends on the operator norms of T as a linear operator
from Xi to Yi for i = 1, 2, and the operator norm of T−1 between [Y0, Y1]ϑ
and [X0, X1]ϑ. This is in fact the connection to the claim about uniformity of
δ and the norm of the inverses of −∇ ·A∇+ γ in the main results Theorem 1
and Corollary 1.

In order to use Theorem 2 we need to have a suitable interpolation scale
at hand. For this, we rely on [7, Ch. 7] from which we cite

Theorem 3 ([7, Thm. 7.1]) Let F be a (d− 1)-set satisfying D ⊆ F ⊆ ∂Ω.
Let further 0 < θ < 1 and 1

2 < s0, s1 <
3
2 and put sθ := (1− θ)s0 + θs1. Then[

Hs0
F (Ω),Hs1

F (Ω)
]
θ

= Hsθ
F (Ω)

and [
L2(Ω),H1

F (Ω)
]
θ

=

{
Hθ
F (Ω) if θ > 1

2 ,

Hθ(Ω) if θ < 1
2 .

Before we prove our main result, we establish a few preparatory lemmas
building upon Theorem 3.

Lemma 2 In the situation of Theorem 3, we also have[
H−s0F (Ω),H−s1F (Ω)

]
θ

= H−sθF (Ω)

and [
L2(Ω),H−1F (Ω)

]
θ

=

{
H−θF (Ω) if θ > 1

2 ,

H−θ(Ω) if θ < 1
2 .

Proof This follows quite immediately from the result that the Hs
F (Ω) spaces

are reflexive [7, Cor. 5.3] and general interpolation duality properties [25,
Ch. 1.11.3]. Here, density of Hs0

F (Ω) ∩ Hs1
F (Ω) = H

max(s0,s1)
F (Ω) in Hs0

F (Ω)
and Hs1

F (Ω) follows from density of Hmax(s0,s1)(Rd) in Hs0(Rd) and Hs1(Rd)
and the characterization Hs

F (Rd) = PFHs(Rd) for a bounded linear projection
PF as proven in [7, Cor. 3.5].

Now it only remains to set the stage for the extension of −∇·A∇ to HsD(Ω)
for s 6= 1 before we can give the proof of the main results.

Lemma 3 Let F be a (d− 1)-set satisfying D ⊆ F ⊆ ∂Ω and let 0 < σ < 1
2 .

Then the weak gradient ∇ ∈ L(H1
F (Ω); L2(Ω)d) maps Hσ+1

F (Ω) continuously
into Hσ(Ω)d and admits a unique continuous linear extension ∇ : H1−σ

F (Ω)→
H−σ(Ω)d.
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Proof The first assertion follows from the corresponding property of Hσ+1(Rd)
and the definition of the Hσ+1

F (Ω) spaces. For the second assertion, observe
that the distributional gradient G : L2(Ω) → H−1∂Ω(Ω)d is a continuous linear
operator, as for all ϕ ∈ L2(Ω) we have (recall Proposition 1)∣∣〈Gϕ, ξ〉∣∣ :=

∣∣∣∣−∫
Ω

ϕdiv ξ dx

∣∣∣∣ ≤ C‖ϕ‖L2(Ω)‖ξ‖H1(Ω)d for all ξ ∈ C∞c (Ω)d.

Moreover, the distributional gradientG restricted to H1(Ω) agrees exactly with
the weak gradient ∇ on H1(Ω) per partial integration and the fundamental
lemma of the calculus of variations. Hence, we are able to interpolate the
operator (which we agree to call ∇ from now on) which by Theorem 3 and
Lemma 2 yields that

∇ ∈ L
([

L2(Ω),H1
F (Ω)

]
1−σ;

[
H−1∂Ω(Ω)d,L2(Ω)d

]
1−σ

)
= L

(
H1−σ
F (Ω); H−σ(Ω)d

)
.

Here, we have used coordinate-wise interpolation in the second component
(cf. [6, Cor. 1.3.8]) and the fundamental interpolation property [X0, X1]θ =
[X1, X0]1−θ for any interpolation couple (X0, X1) and 0 < θ < 1, see [25,
Thm. 1.9.3 b)].

We finally prove the main theorem.

Proof (Theorem 1) We had already noted below Proposition 1 that the forms

H1
Dj (Ω)×H1

Di(Ω) 3 (ϕ, ξ) 7→
〈
−∇ ·Ai,j∇ϕ, ξ

〉
:=
(
Ai,j∇ϕ,∇ξ

)
L2(Ω)

are continuous for i, j ∈ {1, . . . , n}. We extend them to Hε+1
Dj

(Ω) × H1−ε
Di

(Ω)
using Lemma 3 as follows, thereby also extending −∇ · A∇ to a continuous
operator from Hε+1

D (Ω) to Hε−1D (Ω), cf. (2):
Let i, j ∈ {1, . . . , n} be given and denote byMi,j the norm of Ai,j when the

latter is considered as a multiplier acting on Hε(Ω)d. Since Hε(Ω)d is dense in
L2(Ω)d, we estimate∣∣〈−∇ ·Ai,j∇ϕ, ξ〉∣∣ =

∣∣(Ai,j∇ϕ,∇ξ)
L2(Ω)d

∣∣ ≤ ‖Ai,j∇ϕ‖Hε(Ω)d‖∇ξ‖H−ε(Ω)d

≤Mi,j‖∇ϕ‖Hε(Ω)d‖∇ξ‖H−ε(Ω)d ≤ CMi,j‖ϕ‖Hε+1
Dj

(Ω)‖ξ‖H1−ε
Di

(Ω)

for all ϕ ∈ Hε+1
Dj

(Ω) and ξ ∈ H1
Di

(Ω) using Lemma 3. As H1
Di

(Ω) is again dense
in H1−ε

Di
(Ω), we obtain a unique continuous linear extension of −∇ · Ai,j∇ to

a mapping from Hε+1
Dj

(Ω) to Hε−1
Di

(Ω). By definition (see (2)), this also gives
a unique continuous linear extension of −∇ ·A∇ to a mapping from Hε+1

D (Ω)
to Hε−1D (Ω).

For the extension of −∇ · A∇ to an operator H1−ε
D (Ω) → H−1−εD (Ω), we

observe that taking the conjugate transpose (Ai,j)∗ of Ai,j preserves the mul-
tiplier property for Hε(Ω)d. So analogously to the above we obtain∣∣〈−∇ ·Ai,j∇ϕ, ξ〉∣∣ =

∣∣(∇ϕ, (Ai,j)∗∇ξ)
L2(Ω)d

∣∣ ≤ CM∗i,j‖ϕ‖H1−ε
Dj

(Ω)‖ξ‖H1+ε
Di

(Ω)
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for ϕ ∈ H1
Dj

(Ω) and ξ ∈ H1+ε
Di

(Ω), where M∗i,j denotes the multiplier norm
of (Ai,j)∗. This implies that −∇ ·A∇ extends to a continuous linear operator
from H1−ε

D (Ω) to H−1−εD (Ω). Hence the operator is compatible with the inter-
polation couples (H1+ε

D (Ω),H1−ε
D (Ω)) and (Hε−1D (Ω),H−1−εD (Ω)), and this is

then clearly also true for −∇ ·A∇+ γ for any γ ≥ 0.
Now observe that −∇ · A∇ + γ ∈ Liso(H1

D(Ω);H−1D (Ω)) for γ > µ by the
Gårding inequality assumption and the Lax-Milgram lemma, and that[

H1+ε
D (Ω),H1−ε

D (Ω)
]

1
2

= H1
D(Ω) and

[
Hε−1D (Ω),H−1−εD (Ω)

]
1
2

= H−1D (Ω)

due to Theorem 3 and Lemma 2 (and again coordinate-wise interpolation,
see [6, Cor. 1.3.8]). But then the stability result of Šnĕıberg as in Theorem 2
tells us that there exists 0 < δ ≤ ε such that we still have −∇ · A∇ + γ ∈
Liso(Hθ+1

D (Ω);Hθ−1D (Ω)) for all |θ| < δ. This was the first claim. Note that if
D 6= ∅, then γ = µ is also allowed due to the Poincaré inequality, cf. Remark 1.

For the claimed uniformity of δ and the norm of the inverse of −∇·A∇+γ,
we refer to [6, Ch. 1.3.5] and Remark 6.

Proof (Corollary 1) It is a mere reformulation of assertion (3) in Theorem 1
that for every f ∈ Hθ−1D (Ω) there exists a unique u ∈ Hθ+1

D (Ω) satisfying
the elliptic system equation (4) with ‖u‖Hθ+1

D (Ω) ≤ C‖f‖Hθ−1
D (Ω), where C is

independent of f .
Now let η ≥ 0 and p ≥ 2 be such that θ ≥ η + d( 1

2 −
1
p ), and consider

j ∈ {1, . . . , n}. Then, for every function Uj ∈ Hθ+1
Dj

(Rd) with the property
that (Uj)�Ω = uj we use the well known (generalized) Sobolev embeddings
(cf. [25, Ch. 2.8.1]) as follows:

‖uj‖H1+η,p
Dj

(Ω) ≤ ‖Uj‖H1+η,p
Dj

(Rd) ≤ C
?‖Uj‖Hθ+1

Dj
(Rd).

But this implies that ‖uj‖H1+η,p
Dj

(Ω) ≤ C
?‖uj‖Hθ+1

Dj
(Ω) and of course accordingly

‖u‖H1+η,p
D (Ω) ≤ C?‖u‖Hθ+1

D (Ω), so the claim follows by observing that if we
choose 0 < η < θ, then we are also allowed to choose p > 2 while still obeying
the inequality θ ≥ η + d( 1

2 −
1
p ). Uniformity of the collected constants as

claimed in the statement of the corollary finally follows immediately from the
corresponding assertion in Theorem 1.

7 Application: a fracture model

As an application, we consider a standard phase-field model for brittle fracture
as given in [4]. For the following exposition, we consider the formulation given
in [20], where the fracture irreversibility is relaxed by a penalty approach. After
introduction of a time-discretization, the evolution is given by a sequence of
problems associated to each time-step. Namely, for a bounded domain Ω ⊂ R2
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satisfying Assumption 2, one searches for a (vector-valued) displacement u ∈
H1
D(Ω) and a (scalar) phase-field φ ∈ H1(Ω) solving the system of equations(

g(φ)e(u) : e(v)
)

= `(v),(
ε−1(φ− 1) + (1− κ)

(
φe(u) : e(u)

)
+ %[(φ− φ−)+]3, ψ

)
L2(Ω)

+
〈
−∇ · ε∇φ, ψ

〉
= 0

 (7)

for all v ∈ H1
D(Ω) and ψ ∈ H1(Ω), with given loads ` ∈ Hθ0−1D (Ω) for some

θ0 > 0, φ− satisfying 0 ≤ φ− ≤ 1, with 0 < κ � ε � 1 and % > 0 as well
as g(φ) = (1− κ)φ2 + κ, where e(u) and e(v) denotes the symmetric gradient
of u and v, respectively. It has been shown in [20] that this problem admits a
Hilbert space solution (u, φ) ∈ H1

D(Ω)×H1(Ω) with the additional regularity
u ∈ W1,p(Ω) for some p > 2 and φ ∈ L∞(Ω); in fact, 0 ≤ φ(x) ≤ 1 holds for
almost all x ∈ Ω.

With the results obtained in this work, we can now show the following
improved differentiability result.

Corollary 2 There exists 0 < θ̄ ≤ θ0 such that the solution (u, φ) ∈
(
W1,p(Ω)∩

H1
D(Ω)

)
×
(
H1(Ω) ∩ L∞(Ω)

)
of (7) admits the additional regularity u ∈

Hθ+1
D (Ω) and φ ∈ Hθ+1(Ω) for any θ satisfying 0 < θ ≤ θ̄. Moreover we

obtain the estimate

‖u‖H1+θ
D (Ω) ≤ C‖`‖Hθ0−1

D (Ω)

with a constant C = C(‖`‖2H−1,p
D (Ω)

, %, ε).

Proof Slightly rewriting the second equation in (7), we see that φ satisfies(
−∇ · ε∇+ ε−1

)
φ = ε−1 + (κ− 1)

(
φe(u) : e(u)

)
− %[(φ− φ−)+]3 in H−1(Ω).

By the regularity φ ∈ L∞(Ω) and u ∈W1,p(Ω) it is clear that the right hand
side is in fact an element of Lp/2(Ω). Consequently, by Sobolev embedding,
there exists some ϑ > 0 such that it is an element of Hϑ−1(Ω). Theorem 1
then shows that we have φ ∈ Hθ+1(Ω) for all 0 < θ ≤ ϑ̄ for some ϑ̄ ≤ ϑ,
and standard Sobolev embedding theorems assert that φ ∈ Cσ(Ω) for σ =
1+θ− 2

p . Moreover, by [20, Corollary 4.2], we have that ‖φe(u) : e(u)‖Lp/2(Ω) ≤
c‖`‖2H−1,p

D (Ω)
for some constant c ≥ 0, and thus

‖φ‖Cσ(Ω) ≤ c
(
‖`‖2H−1,p

D (Ω)
+ %+ ε−1

)
.

But then, by definition, g(φ) ∈ Cσ(Ω) too and Lemma 1 (iii) shows that this
is indeed a multiplier on Hθ(Ω). Now another application of Theorem 1 to the
equation (

g(φ)e(u) : e(v)
)

= `(v) for all v ∈ H1
D(Ω)

yields the claimed regularity. For the stability estimate, we utilize the above
bound on ‖φ‖Cσ(Ω) together with the uniformity assertion in Corollary 1.
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Such regularity results can now be utilized, e.g., in the numerical analysis of
such fracture processes, as the improved regularity H1+θ

D (Ω) allows to quantify
best-approximation errors in H1

D(Ω) in terms of the discretization fineness.

Remark 7 In the case where the irreversibility of the fracture is not relaxed
via a penalization approach, the equation for φ becomes an obstacle problem
where the term involving %([(φ−φ−)+]3 is replaced by the requirement φ ≤ φ−.
If the domain is sufficiently regular, then classical W2,p/2(Ω)-regularity of the
obstacle problem, i.e., φ ∈W2,p/2(Ω) as long as φ− ∈W2,p/2(Ω), can be used
to show that φ is again a multiplier (see, e.g., [5, Corollary II.3]).

8 Application: quasilinear equations

We give another possible application for Theorem 1. Let us consider a single
abstract parabolic quasilinear evolution equation of the form

u′(t)−∇ ·A(u(t))∇u(t) = F (u(t)), u(0) = u0. (8)

For this exposition, we assume that the (nonlinear) functions A and F and the
initial value u0 are suitably regular. Suppose we want to treat (8) in the space
Hθ−1
D (Ω) for Ω ⊂ R2. (We give a motivation why this is interesting below

Remark 8.)
A possible way to do so are the abstract frameworks of Amann [2] and

Prüss [21, Thm. 3.1] basing on maximal regularity techniques. One of the
most critical points to verify for this is that there is a space Dθ such that
−∇ · A(u)∇ is a continuous linear operator from Dθ to Hθ−1

D (Ω) for all u
from the trace- or interpolation space (Dθ,Hθ−1

D (Ω))1/p,p for some 1 < p <∞.
Here our main Theorem 1 comes into play: If we are able to show that u ∈
(H1+θ

D (Ω),Hθ−1
D (Ω))1/p,p implies that A(u) is a suitable multiplier on Hε(Ω)2

for some θ < ε < 1
2 , then the theorem shows that Dθ = H1+θ

D (Ω) indeed does
the job.

Indeed, assuming that the set Ω∪D ⊂ R2 is regular in the sense of Gröger
(cf. Remark 3) and using the results in [10, Sect. 3], one may show by inter-
polation techniques that(

H1+θ
D (Ω),Hθ−1

D (Ω)
)

1
p ,p

↪→ Bεd
ε (1+η),2

(Ω)

if
θ < ε <

1 + η

η
θ and p >

2(1 + θ)

1 + θ − ε η
1+η −

d
2

with η sufficiently large, but finite. If we then further suppose that A is suf-
ficiently regular to pass the regularity of u to A(u), then Theorem 1 and
Lemma 1 tell us that −∇ ·A(u)∇ is indeed a continuous linear operator from
H1+θ
D (Ω) to Hθ−1

D (Ω) for every u ∈ (H1+θ
D (Ω),Hθ−1

D (Ω))1/p,p for p as given
above. The condition on p shows why we needed to restrict ourselves to d = 2
here, as 1− d

2 + θ < 0 for d ≥ 3 due to θ < 1
2 .
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So, while there are still quite formidable assumptions left to establish for
the frameworks in [2] and [21] to completely treat the quasilinear equation in
Hθ−1
D (Ω), Theorem 1 can be used as a starting point to do so as explained

above.

Remark 8 Let us point out that the space Bε∞,2(Ω), so η =∞ inBεd(1+η)/ε,2(Ω),
is not suitable as a multiplier space here since H1+θ

D (Ω) ↪→ Bθ∞,2(Ω) and the
smoothness order in the Besov space cannot be improved ([23, Thm. 2.2.3]).
This is already insufficient for the multiplier property on Hε(Ω) due to the
requirement ε > θ and will not improve by interpolation with Hθ−1

D (Ω). In
this sense, we really need Bεd(1+η)/ε,2(Ω) with finite η as a multiplier space for
Hε(Ω) here.

Finally, let us briefly explain why it is of interest to treat the quasilinear
equation in H1+θ

D (Ω) in space dimension d = 2: Consider a bounded function
u : [0, T ] → (H1+θ

D (Ω),Hθ−1
D (Ω))1/p,p. For p suitably large, we expect that

|∇u(t)|2 admits enough integrability to give rise to an element of Hθ−1
D (Ω),

since then the interpolation space is sufficiently close to H1+θ
D (Ω) to still embed

into a space of type H1,p
D (Ω) with p > d = 2, as in the proof of Corollary 1.

Hence, treating the quasilinear equation in Hθ−1
D (Ω) in space dimension d = 2

would allow to incorporate quadratic gradient terms of u(t) in F (u(t)) which
is of practical relevance. Here, we have assumed u to be bounded so that
there occurs no loss of time integrability over the finite time interval [0, T ]
between u(·) in the interpolation space and |∇u(·)|2 in Hθ−1

D (Ω). To achieve
this boundedness in the maximal regularity setting we need to consider u with
values in the interpolation space.
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