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Exercise 1 (Approximation of the tangential cone). Let x̄ ∈ F = G−1[K] be regular.

(a) Show that
dist

(
x− x̄, T`(G, K, x̄)

)
= o

(
‖x− x̄‖X

)
(1)

for F 3 x → x̄.

(b) Give an alternative proof of Lemma 3.47, so show that there exists a map h : F →
T`(G, K, x̄) with∥∥h(x)− (x− x̄)

∥∥
X = o

(
‖x− x̄‖X

)
for F 3 x → x̄.

Solution.

(a) We use Theorem 3.19 by Robinson about metric regularity. A special case of the
theorem, cf. Remark 3.20, says that if x̄ ∈ F is regular for the constraint G(x) ∈ K,
then there exist c, δ > 0 such that

dist (x,F ) ≤ c dist (G(x), K) (2)

for all x ∈ Bδ,X(x̄).

The idea is to use this result for a suitable constraint such that we are able to
reproduce (1) with (2). The feasible set F now needs to be T`(G, K, G(x̄)), so
we propose the constraint G′(x̄)d ∈ T(K, G(x̄)), since T`(G, K, G(x̄)) is exactly
defined to consist of all those d ∈ X for which G′(x̄)d ∈ T(K, G(x̄)).

As we have to show (1) for x → x̄, the designated regular point of the new con-
straint is d̄ = 0. To verify that this is indeed a regular point for the constraint
G′(x̄)d ∈ T(K, G(x̄)), consider RCQ for this new problem:

0
!
∈ int

{
G′(x̄)d̄ + G′(x̄)X− T(K, G(x̄)

}
= int

{
G′(x̄)X− cone(K, G(x̄))

}
.

On the other hand, we already know that x̄ is regular for the original constraint
G(x) ∈ K, hence

0 ∈ int
{

G(x̄) + G′(x̄)X− K
}
= int

{
G′(x̄)X−

(
K− G(x̄)

)}
⊂ int

{
G′(x̄)X− cone(K, G(x̄))

}
,

which shows that d̄ is indeed regular for the new constraint. Hence, Theorem 3.19
gives us that there exist c, δ > 0 such that

dist (d, T`(G, K, x̄)) ≤ c dist
(
G′(x̄)d, T(K, G(x̄))

)
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for all d ∈ Bδ,X(0). It remains to show that dist
(
G′(x̄)(x − x̄), T(K, G(x̄))

)
=

o(‖x− x̄‖X) for x ∈ F close to x̄. This follows from observing that

dist
(
G′(x̄)d, T(K, G(x̄))

)
= inf

h∈T(K,G(x̄))

∥∥h− G′(x̄)d
∥∥

X

≤ inf
λ≥0,
h∈K

∥∥λ(h− G(x̄))− G′(x̄)d
∥∥

X

≤ inf
h∈K

∥∥h− G(x̄)− G′(x̄)d
∥∥

X

for all d ∈ X, because then the form d = x − x̄ with x ∈ F and the choice h =
G(x) ∈ K yields

dist
(
G′(x̄)d, T(K, G(x̄))

)
≤
∥∥G(x)− G(x̄)− G′(x̄)(x− x̄)

∥∥
X = o

(
‖x− x̄‖X

)
by F-differentiability of G.

(b) Having (1) at hand, we know that by definition of the distance, for every x ∈ F
there exists h = h(x) ∈ T`(G, K, x̄) such that∥∥h(x)− (x− x̄)

∥∥
X ≤ dist

(
x− x̄, T`(G, K, x̄)

)
+ ‖x− x̄‖2

X.

This choice already gives rise to the searched-for map h : F → T`(G, K, x̄) since
the right-hand side in the foregoing inequality is already of order o(‖x − x̄‖X)
by (1).

Exercise 2 (Necessary optimality conditions for a simply constrained problem). Let X
be a Banach space with K ⊆ X nonempty and convex. Let further f : U → R, where
U ⊃ K is an open set, be twice G-differentiable around the locally optimal solution x̄ of
the optimization problem

min f (x) s.t. x ∈ K. (OP)

(a) Show that x̄ satisfies〈
f ′(x̄), x− x̄

〉
X∗,X ≥ 0 for all x ∈ K

and

f ′′(x̄)
[
x− x̄, x− x̄

]
≥ 0 for all x ∈ K with

〈
f ′(x̄), x− x̄

〉
X∗,X = 0.

(b) Now suppose that X = L2(Ω) for some domain Ω ⊆ Rn and let

K :=
{

w ∈ L2(Ω) : a ≤ w ≤ b
}

,

where a, b ∈ L2(Ω) and a < b almost everywhere on Ω. Consider∇ f (x̄) ∈ L2(Ω),
so the representation of f ′(x̄) ∈ L2(Ω)∗ w.r.t. the L2(Ω)-scalar product. Find
pointwise (almost everywhere) conditions on ∇ f (x̄) from the necessary optimal-
ity conditions derived in the foregoing part of this exercise.
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(c) Derive the KKT-conditions for (OP) and compare them with the pointwise condi-
tions on ∇ f (x̄).

Solution.

(a) The proofs work exactly as in Nonlinear Optimization. Since we know that x̄ is
locally optimal for (OP), that K is convex and that f is G-differentiable around x̄,
we find

0 ≤
f
(
x̄ + t(x− x̄)

)
− f (x̄)

t
for all x ∈ K, t ∈ [0, 1],

hence

0 ≤ lim
t↘0

f
(

x̄ + t(x− x̄)
)
− f (x̄)

t
=
〈

f ′(x̄), x− x̄
〉

X∗,X for all x ∈ K.

For the second assertion, consider the Taylor expansion of t 7→ f (x̄ + t(x − x̄))
and observe that

0 ≤ f
(
x̄ + t(x− x̄)

)
− f (x̄) = t

〈
f ′(x̄), x− x̄

〉
X∗,X +

t2

2
f ′′(x̄)

[
x− x̄, x− x̄

]
+ o(t2)

as t↘ 0. If now
〈

f ′(x̄), x− x̄
〉

X∗,X, then we obtain

f ′′(x̄)
[
x− x̄, x− x̄

]
≥ o(t2)

t2 → 0 as t↘ 0.

(b) The gradient∇ f (x̄) ∈ L2(Ω) is defined to be precisely the function which satisfies〈
f ′(x̄), h

〉
L2(Ω)∗,L2(Ω)

=
(
∇ f (x̄), h

)
L2(Ω)

=
∫

Ω
∇ f (x̄)(h)dt for all h ∈ L2(Ω),

so in particular〈
f ′(x̄), x− x̄

〉
L2(Ω)∗,L2(Ω)

=
(
∇ f (x̄), x− x̄

)
L2(Ω)

=
∫

Ω
∇ f (x̄)(x− x̄)dt for all x ∈ K.

So, if x̄ is locally optimal for (OP), then we have∫
Ω
∇ f (x̄)(x− x̄)dt ≥ 0 for all x ∈ K.

This allows to derive the following conditions on ∇ f (x̄): Consider the set

Ω(b) :=
{

t ∈ Ω : x̄(t) = b(t)
}

.
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We know that x(t)− x̄(t) ≤ 0 for almost all t ∈ Ω(b) and all x ∈ K. Now assume
that ∇ f (x̄)(t) > 0 for some set Ξ ⊆ Ω(b) with nonzero Lebesgue measure and
consider the function x = χΞ · (a− x̄) + x̄ ∈ K. Then∫

Ω
∇ f (x̄)(x− x̄)dt =

∫
Ξ
∇ f (x̄)︸ ︷︷ ︸

>0

· (a− b)︸ ︷︷ ︸
>0

dt < 0,

which is a contradiction. Hence, ∇ f (x̄) ≤ 0 almost everywhere on Ω(b). Analo-
gously, one shows that ∇ f (x̄) ≥ 0 almost everywhere on Ω(a). Finally, ∇ f (x̄)
must be zero almost everywhere on the set Ω(a, b) where x̄(t) ∈ (a(t), b(t))
as one sees immediately by considering the functions x = χΞ(a − x̄) + x̄ and
x = χΞ(b− x̄) + x̄ with Ξ ⊆ Ω(a, b) having nonzero Lebesgue measure.

Altogether, we arrive at

∇ f (x̄)(t)


≤ 0 if x̄(t) = b(t),
≥ 0 if x̄(t) = a(t),
= 0 otherwise

for almost every t ∈ Ω.

(c) The KKT conditions for (OP) are given by

f ′(x̄) + λ̄ = 0 in L2(Ω)∗ and λ̄ ∈ T(K, x̄)◦.

The latter implies that 〈λ̄, d〉 ≤ 0 for all d ∈ cone(K, x̄), so in particular〈
f ′(x̄), x− x̄

〉
L2(Ω)∗,L2(Ω)

=
〈
−λ̄, x− x̄

〉
L2(Ω)∗,L2(Ω)

≥ 0 for all x ∈ K.

From here, one argues as above. The KKT conditions thus yield the same neces-
sary pointwise representation of ∇ f (x̄) as the “basic” necessary first-order opti-
mality conditions.

Exercise 3. Gotta catch do ’em all! Solve the remaining exercises from the previous
exercise sheets.
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