Dr. Hannes Meinlschmidt

Exercise 1 (Approximation of the tangential cone). Let $\bar{x} \in \mathcal{F} = G^{-1}[K]$ be regular.

(a) Show that

$$\operatorname{dist}\left(x-\bar{x},T_{\ell}(G,K,\bar{x})\right)=o\left(\|x-\bar{x}\|_{X}\right) \tag{1}$$

for $\mathcal{F} \ni x \to \bar{x}$.

(b) Give an alternative proof of Lemma 3.47, so show that there exists a map $h: \mathcal{F} \to T_{\ell}(G, K, \bar{x})$ with

$$\|h(x) - (x - \bar{x})\|_{X} = o(\|x - \bar{x}\|_{X}) \quad \text{for } \mathcal{F} \ni x \to \bar{x}.$$

Solution.

(a) We use Theorem 3.19 by Robinson about metric regularity. A special case of the theorem, cf. Remark 3.20, says that if $\bar{x} \in \mathcal{F}$ is regular for the constraint $G(x) \in K$, then there exist $c, \delta > 0$ such that

$$dist(x, \mathcal{F}) \le c dist(G(x), K)$$
 (2)

for all $x \in B_{\delta,X}(\bar{x})$.

1

The idea is to use this result for a suitable constraint such that we are able to reproduce (1) with (2). The feasible set \mathcal{F} now needs to be $T_{\ell}(G, K, G(\bar{x}))$, so we propose the constraint $G'(\bar{x})d \in T(K, G(\bar{x}))$, since $T_{\ell}(G, K, G(\bar{x}))$ is exactly defined to consist of all those $d \in X$ for which $G'(\bar{x})d \in T(K, G(\bar{x}))$.

As we have to show (1) for $x \to \bar{x}$, the designated regular point of the new constraint is $\bar{d} = 0$. To verify that this is indeed a regular point for the constraint $G'(\bar{x})d \in T(K, G(\bar{x}))$, consider RCQ for this new problem:

$$0 \stackrel{\cdot}{\in} \operatorname{int} \left\{ G'(\bar{x})d + G'(\bar{x})X - T(K, G(\bar{x})) \right\} = \operatorname{int} \left\{ G'(\bar{x})X - \overline{\operatorname{cone}(K, G(\bar{x}))} \right\}.$$

On the other hand, we already know that \bar{x} is regular for the original constraint $G(x) \in K$, hence

$$0 \in \operatorname{int} \left\{ G(\bar{x}) + G'(\bar{x})X - K \right\} = \operatorname{int} \left\{ G'(\bar{x})X - \left(K - G(\bar{x})\right) \right\}$$
$$\subset \operatorname{int} \left\{ G'(\bar{x})X - \overline{\operatorname{cone}(K, G(\bar{x}))} \right\},$$

which shows that \overline{d} is indeed regular for the new constraint. Hence, Theorem 3.19 gives us that there exist $c, \delta > 0$ such that

dist
$$(d, T_{\ell}(G, K, \bar{x})) \leq c \operatorname{dist} \left(G'(\bar{x})d, T(K, G(\bar{x})) \right)$$

for all $d \in B_{\delta,X}(0)$. It remains to show that dist $(G'(\bar{x})(x - \bar{x}), T(K, G(\bar{x}))) = o(||x - \bar{x}||_X)$ for $x \in \mathcal{F}$ close to \bar{x} . This follows from observing that

$$dist\left(G'(\bar{x})d, T(K, G(\bar{x}))\right) = \inf_{\substack{h \in T(K, G(\bar{x}))\\ h \in K}} \left\|h - G(\bar{x}) - G'(\bar{x})d\right\|_{X}$$
$$\leq \inf_{\substack{h \in K\\ h \in K}} \left\|h - G(\bar{x}) - G'(\bar{x})d\right\|_{X}$$

for all $d \in X$, because then the form $d = x - \bar{x}$ with $x \in \mathcal{F}$ and the choice $h = G(x) \in K$ yields

$$\operatorname{dist}\left(G'(\bar{x})d,T(K,G(\bar{x}))\right) \leq \left\|G(x) - G(\bar{x}) - G'(\bar{x})(x-\bar{x})\right\|_{X} = o\left(\|x-\bar{x}\|_{X}\right)$$

by F-differentiability of G.

(b) Having (1) at hand, we know that by definition of the distance, for every $x \in \mathcal{F}$ there exists $h = h(x) \in T_{\ell}(G, K, \bar{x})$ such that

$$\|h(x) - (x - \bar{x})\|_X \le \operatorname{dist}(x - \bar{x}, T_\ell(G, K, \bar{x})) + \|x - \bar{x}\|_X^2.$$

This choice already gives rise to the searched-for map $h: \mathcal{F} \to T_{\ell}(G, K, \bar{x})$ since the right-hand side in the foregoing inequality is already of order $o(||x - \bar{x}||_X)$ by (1).

Exercise 2 (Necessary optimality conditions for a simply constrained problem). Let *X* be a Banach space with $K \subseteq X$ nonempty and convex. Let further $f: U \to \mathbb{R}$, where $U \supset K$ is an open set, be twice G-differentiable around the locally optimal solution \bar{x} of the optimization problem

$$\min f(x) \quad \text{s.t.} \quad x \in K. \tag{OP}$$

(a) Show that \bar{x} satisfies

 $\langle f'(\bar{x}), x - \bar{x} \rangle_{X^*, X} \ge 0$ for all $x \in K$

and

$$f''(\bar{x})[x-\bar{x},x-\bar{x}] \ge 0$$
 for all $x \in K$ with $\langle f'(\bar{x}),x-\bar{x} \rangle_{X^*,X} = 0$.

(b) Now suppose that $X = L^2(\Omega)$ for some domain $\Omega \subseteq \mathbb{R}^n$ and let

$$K \coloneqq \left\{ w \in L^2(\Omega) \colon a \le w \le b \right\},$$

where $a, b \in L^2(\Omega)$ and a < b almost everywhere on Ω . Consider $\nabla f(\bar{x}) \in L^2(\Omega)$, so the representation of $f'(\bar{x}) \in L^2(\Omega)^*$ w.r.t. the $L^2(\Omega)$ -scalar product. Find pointwise (almost everywhere) conditions on $\nabla f(\bar{x})$ from the necessary optimality conditions derived in the foregoing part of this exercise.

(c) Derive the KKT-conditions for (OP) and compare them with the pointwise conditions on ∇*f*(*x*).

Solution.

(a) The proofs work exactly as in Nonlinear Optimization. Since we know that \bar{x} is locally optimal for (OP), that *K* is convex and that *f* is G-differentiable around \bar{x} , we find

$$0 \leq \frac{f(\bar{x} + t(x - \bar{x})) - f(\bar{x})}{t} \quad \text{for all } x \in K, \ t \in [0, 1],$$

hence

$$0 \le \lim_{t \searrow 0} \frac{f(\bar{x} + t(x - \bar{x})) - f(\bar{x})}{t} = \left\langle f'(\bar{x}), x - \bar{x} \right\rangle_{X^*, X} \quad \text{for all } x \in K.$$

For the second assertion, consider the Taylor expansion of $t \mapsto f(\bar{x} + t(x - \bar{x}))$ and observe that

$$0 \le f(\bar{x} + t(x - \bar{x})) - f(\bar{x}) = t \langle f'(\bar{x}), x - \bar{x} \rangle_{X^*, X} + \frac{t^2}{2} f''(\bar{x}) [x - \bar{x}, x - \bar{x}] + o(t^2)$$

as $t \searrow 0$. If now $\langle f'(\bar{x}), x - \bar{x} \rangle_{X^*, X'}$ then we obtain

$$f''(\bar{x})[x-\bar{x},x-\bar{x}] \geq \frac{o(t^2)}{t^2} \to 0 \quad \text{as } t \searrow 0.$$

(b) The gradient $\nabla f(\bar{x}) \in L^2(\Omega)$ is defined to be precisely the function which satisfies

$$\langle f'(\bar{x}),h\rangle_{L^2(\Omega)^*,L^2(\Omega)} = (\nabla f(\bar{x}),h)_{L^2(\Omega)} = \int_{\Omega} \nabla f(\bar{x})(h) \,\mathrm{d}t \quad \text{for all } h \in L^2(\Omega),$$

so in particular

$$\langle f'(\bar{x}), x - \bar{x} \rangle_{L^2(\Omega)^*, L^2(\Omega)} = \left(\nabla f(\bar{x}), x - \bar{x} \right)_{L^2(\Omega)}$$

= $\int_{\Omega} \nabla f(\bar{x}) (x - \bar{x}) \, \mathrm{d}t \quad \text{for all } x \in K.$

So, if \bar{x} is locally optimal for (OP), then we have

$$\int_{\Omega} \nabla f(\bar{x})(x-\bar{x}) \, \mathrm{d}t \ge 0 \quad \text{for all } x \in K.$$

This allows to derive the following conditions on $\nabla f(\bar{x})$: Consider the set

$$\Omega(b) \coloneqq \big\{ t \in \Omega \colon \bar{x}(t) = b(t) \big\}.$$

We know that $x(t) - \bar{x}(t) \le 0$ for almost all $t \in \Omega(b)$ and all $x \in K$. Now assume that $\nabla f(\bar{x})(t) > 0$ for some set $\Xi \subseteq \Omega(b)$ with nonzero Lebesgue measure and consider the function $x = \chi_{\Xi} \cdot (a - \bar{x}) + \bar{x} \in K$. Then

$$\int_{\Omega} \nabla f(\bar{x})(x-\bar{x}) \, \mathrm{d}t = \int_{\Xi} \underbrace{\nabla f(\bar{x})}_{>0} \cdot \underbrace{(a-b)}_{>0} \, \mathrm{d}t < 0,$$

which is a contradiction. Hence, $\nabla f(\bar{x}) \leq 0$ almost everywhere on $\Omega(b)$. Analogously, one shows that $\nabla f(\bar{x}) \geq 0$ almost everywhere on $\Omega(a)$. Finally, $\nabla f(\bar{x})$ must be zero almost everywhere on the set $\Omega(a, b)$ where $\bar{x}(t) \in (a(t), b(t))$ as one sees immediately by considering the functions $x = \chi_{\Xi}(a - \bar{x}) + \bar{x}$ and $x = \chi_{\Xi}(b - \bar{x}) + \bar{x}$ with $\Xi \subseteq \Omega(a, b)$ having nonzero Lebesgue measure.

Altogether, we arrive at

$$\nabla f(\bar{x})(t) \begin{cases} \leq 0 & \text{if } \bar{x}(t) = b(t), \\ \geq 0 & \text{if } \bar{x}(t) = a(t), \\ = 0 & \text{otherwise} \end{cases} \text{ for almost every } t \in \Omega.$$

(c) The KKT conditions for (OP) are given by

$$f'(\bar{x}) + \bar{\lambda} = 0$$
 in $L^2(\Omega)^*$ and $\bar{\lambda} \in T(K, \bar{x})^\circ$.

The latter implies that $\langle \bar{\lambda}, d \rangle \leq 0$ for all $d \in \text{cone}(K, \bar{x})$, so in particular

$$\langle f'(\bar{x}), x - \bar{x} \rangle_{L^2(\Omega)^*, L^2(\Omega)} = \langle -\bar{\lambda}, x - \bar{x} \rangle_{L^2(\Omega)^*, L^2(\Omega)} \ge 0 \quad \text{for all } x \in K.$$

From here, one argues as above. The KKT conditions thus yield the same necessary pointwise representation of $\nabla f(\bar{x})$ as the "basic" necessary first-order optimality conditions.

Exercise 3. Gotta catch do 'em all! Solve the remaining exercises from the previous exercise sheets.