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Exercise 1 (Linear operators in multiple components, Jacobian, KKT-conditions). Let
X1, . . . , Xn and Z1, . . . , Zm be Banach spaces and set X := X1 × · · · × Xn as well as
Z := Z1 × · · · × Zm. Consider an operator A ∈ L(X; Z).

(a) Show that A uniquely corresponds to an m × n-operator-matrix A = (Aij) of
continuous linear operators Aij ∈ L(Xj; Zi) such that

Ax = A

x1
...

xn

 for x = (x1, . . . , xn) with xi ∈ Xi,

and that A 7→ ∑m
i=1 max1≤j≤n ‖Aij‖L(Xj;Zi) is an equivalent norm to ‖ · ‖L(X;Z).

(b) Show that X∗ = X∗1 × · · · × X∗n and Z∗ = Z∗1 × · · · × Z∗m and determine the
operator-matrix corresponding to A∗ ∈ L(Z∗; X∗).

(c) Let G : X → Z be F-differentiable around x̄ ∈ X. Show that the operator-matrix
G ′(x̄) of G′(x̄) is exactly a generalized Jacobian matrix of G in x̄.

(d) Let (ȳ, ū) be a regular point of the control-constrained optimal control problem

min
(y,u)∈Y×U

J(y, u) s.t. E(y, u) = 0, u ∈ Uad,

where J : Y ×U → R and E : Y ×U → Z are F-differentiable, Y, U, Z are Banach
spaces, and Uad is closed and convex. Apply the above results to the multiplier
rule in the KKT-conditions of this problem for (ȳ, ū).

Remark: Recall (or verify) that every norm ‖ · ‖α on Rn constructed in the form ‖x‖ =
f (|x1|, . . . , |xn|) for x ∈ Rn also gives rise to a norm ‖x‖α,X = f (‖x1‖X1 , . . . , ‖xn‖Xn)
on X, for example ‖(x1, . . . , xn)‖1,X := ∑n

i=1 ‖xi‖Xi , and all these norms are equiva-
lent because the ones on Rn are; an analogous result of course holds for Z and Rm.
For convenience, we always choose the norm induced by the ‖ · ‖1-norm on the finite-
dimensional space.

Solution.

(a) We define the operator Aij : Xj → Zi by

Aijxj :=
(

A(0, . . . , 0, xj, 0, . . . , 0)
)

i.
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This operator is clearly linear and thanks to

‖Aijxj‖Zi =
∥∥(A(0, . . . , 0, xj, 0, . . . , 0)

)
i

∥∥
Zi

≤ ‖A‖L(Xj;Z)‖(0, . . . , xj, . . . )‖Xj = ‖A‖L(Xj;Z)‖xj‖Xj

continuous with ‖Aij‖L(Xj;Zi) ≤ ‖A‖L(X;Z). (Recall that we use the ‖ · ‖1-norms
on X and Z.) Setting

A =

A11 · · · A1n
...

. . .
...

Am1 · · · Amn

 ,

we find, where Aj ∈ L(Xj; Z) are given by the columns of A,

Ax :=
(

A1 · · · An
)

x :=
n

∑
j=1

Ajxj = Ax,

which proves the unique correspondence between the operator-matrix A and A.

For the norm equivalence, we further observe that by construction

‖Ax‖Z =
m

∑
i=1
‖(Ax)i‖Zi =

m

∑
i=1

∥∥∥∥∥ n

∑
j=1

Aijxj

∥∥∥∥∥
Zi

≤
m

∑
i=1

n

∑
j=1

∥∥Aijxj
∥∥

Zi
≤

m

∑
i=1

n

∑
j=1
‖Aij‖L(Xj;Zi)‖xj‖Xj

and thus

‖Ax‖Z ≤
m

∑
i=1

max
1≤j≤n

‖Aij‖L(Xj;Zi)

n

∑
j=1
‖xj‖Xj =

(
m

∑
i=1

max
1≤j≤n

‖Aij‖L(Xj;Zi)

)
‖x‖X,

so ‖A‖L(X;Z) ≤ ∑m
i=1 max1≤j≤n ‖Aij‖L(Xj;Zi). Since we also had ‖Aij‖L(Xj;Zi) ≤

‖A‖L(X;Z) as above, this shows that

‖A‖L(X;Z) ≤
m

∑
i=1

max
1≤j≤n

‖Aij‖L(Xj;Zi) ≤ m‖A‖L(X;Z). (1)

(b) Let x′ ∈ X∗ = L(X; R). We have already observed that we may uniquely identify
x′ with (x′1, . . . , x′n), where x′j ∈ L(Xi; R) = X∗j , via

〈x′, x〉X∗,X =
n

∑
j=1
〈x′j, xj〉X∗j ,Xj .

Moreover, per (1), we have ‖x∗‖X∗ = max1≤j≤n ‖x∗j ‖X∗j , which is exactly ‖ · ‖∞,X∗1×···×X∗n
and thus equivalent to the ‖ · ‖1-norm on X∗1 × · · · × X∗n.
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Now let us consider the operator A∗ ∈ L(Z∗; X∗). It has the fundamental defining
property that

〈z′, Ax〉Z∗,Z = 〈A∗z′, x〉X∗,X for all x ∈ X, z′ ∈ Z∗. (2)

Identifying the operators and spaces in their “matrix format”, we find

〈z′, Ax〉Z∗,Z =
n

∑
j=1

〈
z′, Ajxj

〉
Z∗,Z =

n

∑
j=1

m

∑
i=1

〈
z′i, (Ajxj)i

〉
Z∗i ,Zi

=
n

∑
j=1

m

∑
i=1

〈
z′i, Aijxj

〉
Z∗i ,Z:i =

n

∑
j=1

m

∑
i=1

〈
A∗ijz

′
i, xj
〉

X∗j ,Xj
.

By (2), the latter is nothing else than 〈A∗z′, x〉X∗,X. Carefully reading off indices
and comparing, we find that the matrix A∗ corresponding to A∗ is obtained from
A by transposing A and taking adjoint operators, so

A ∼ A =

A11 . . . A1n
...

. . .
...

Am1 . . . Amn

  A∗ ∼ A∗ =

A∗11 . . . A∗m1
...

. . .
...

A∗1n . . . A∗mn

 .

(c) We consider without loss of generality m = 1. Denoting ej = (0, . . . , 0, hj, 0, . . . , 0)
for hj ∈ Xj, we have seen that G′(x̄)jhj is then exactly given by G′(x̄)ej. The
derivative G′(x̄) of G in x̄ is defined as the operator which satisfies

G(x̄ + h) = G(x̄) + G′(x̄)h + o
(
‖h‖X

)
, h ∈ X.

Inserting h = ej, this shows that

G(x̄ + ej) = G(x̄) + G′(x̄)jhj + o
(
‖hj‖Xj

)
.

On the other hand, the partial derivative G′xj
(x̄) of G in x̄ in direction of the jth

variable is given exactly as the derivative in 0 of the function hj 7→ Gj(hj) :=
G(x̄ + ej) which yields

G(x̄+ ej) = Gj(hj) = Gj(0)+G′xj
(x̄)hj + o

(
‖hj‖Xj

)
= G(x̄)+G′xj

(x̄)hj + o
(
‖hj‖Xj

)
.

From the uniqueness of the derivative, this shows that indeed G′(x̄)j = G′xj
(x̄)

and hence
G ′(x̄) =

(
G′x1

(x̄) · · · G′xn
(x̄)
)

. (3)

(d) The multiplier rule in the KKT conditions for the given optimal control problem
states that there exists a Lagrange multiplier λ ∈ (W × U)∗ such that, where
G(y, u) = (E(y,u)

u ) : Y×U →W ×U,

J′(ȳ, ū) + G′(ȳ, ū)∗λ̄ = 0 in (Y×U)∗.
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Since (Y ×U)∗ = Y∗ ×U∗, the equation consists of two components. From the
foregoing exercise and (3), G′(ȳ, ū) can be written in the form of a Jacobian:

G′(ȳ, ū) =
(

E′y(ȳ, ū) E′u(ȳ, ū)
0 idU

)
We have also seen that the adjoint operator G′(ȳ, ū)∗ is then given in matrix-form
by

G′(ȳ, ū)∗ =
(

E′y(ȳ, ū)∗ 0
E′u(ȳ, ū)∗ idU∗

)
.

Writing λ̄ = ( p̄, µ̄) ∈ (W ×U)∗ = W∗ ×U∗, we thus find

J′(ȳ, ū) + G′(ȳ, ū)∗λ̄ =

(
J′y(ȳ, ū)
J′u(ȳ, ū)

)
+

(
E′y(ȳ, ū) p̄

E′u(ȳ, ū) p̄ + µ̄

)
,

This is exactly the form given in the lecture notes.

Exercise 2 (Lax-Milgram lemma and divergence-gradient operators). Let H be a Hilbert
space and consider a continuous coercive bilinear form a : H × H → R on H, which
means that there exist constants C, α > 0 such that

|a(u, v)| ≤ C‖u‖H‖v‖H for all u, v ∈ H (continuity/boundedness)

and

a(u, u) ≥ α‖u‖2
H for all u ∈ H (coercivity).

(a) Prove the world-famous Lax-Milgram lemma: For every f ∈ H∗, there exists a
unique u = u f ∈ H such that

a(u, v) = 〈 f , v〉H∗,H for all v ∈ H

and there holds ‖u f ‖H ≤ α−1‖ f ‖H∗ .

Hints:

(i) Recall the also world-famous Fréchet-Riesz representation theorem: There is a
continuous linear isometric isomorphism T ∈ L(H∗; H) such that, for all
g ∈ H∗, we have 〈g, v〉H∗,H = (Tg, v)H for all v ∈ H.

(ii) Let M ⊆ H. Then (u, v)H = 0 for all u ∈ M implies v = 0 if and only if M is
dense in H. (Prove this if needed!)

(b) Let Ω ⊂ Rn be a bounded domain and let µ ∈ L∞(Ω; Sn), where Sn is the set of
symmetric real n × n-matrices equipped with the operator-norm inherited from
‖ · ‖2 on Rn.
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(i) Show that the weak divergence-gradient operator Aµ given by

〈Aµu, v〉 :=
∫

Ω

(
µ∇u

)
· ∇v dx for all v ∈ H1

0(Ω)

for u ∈ H1
0(Ω) is a linear continuous operator H1

0(Ω)→ H−1(Ω) = H1
0(Ω)∗.

(ii) Suppose that there is µ0 > 0 such that µ additionally satisfies

vTµv ≥ µ0‖v‖2
2 for all v ∈ Rn for almost all x ∈ Ω.

Show that then for every f ∈ H−1(Ω) there is a unique solution u = u f ∈
H1

0(Ω) of the weak formulation∫
Ω

(
µ∇u

)
· ∇v dx = 〈 f , v〉H−1(Ω),H1

0 (Ω) for all v ∈ H1
0(Ω)

of the elliptic second-order partial differential equation

−div (µ∇u) = f in Ω,
u = 0 on ∂Ω.

(This equation is to be seen formally, because µ and f are too general for the
equation to be interpreted in a classic sense.) The function u = u f moreover
satisfies ‖u f ‖H1

0 (Ω) ≤ µ−1
0 ‖ f ‖H−1(Ω), so A−1

µ ∈ L(H−1(Ω); H1
0(Ω)), and it is

also the unique solution of the minimization problem

min
w∈H1

0 (Ω)

1
2

∫
Ω

(
µ∇w

)
· ∇w dx−〈 f , w〉H−1(Ω),H1

0 (Ω). (4)

Hint: Recall that u 7→ ‖∇u‖L2(Ω) is an equivalent norm on H1
0(Ω).

Solution.

(a) First the second hint: The mapping u 7→ (u, v)H defines a continuous linear func-
tional on H with norm ‖v‖H: Clearly, its norm is less or equal to ‖v‖H due to
Cauchy-Schwarz, but inserting v itself shows that it is indeed exactly ‖v‖H. From
(u, v)H = 0 for all u ∈ M it then follows that this functional is the zero functional
and thus ‖v‖H = 0 if M is dense in H. For the reverse implication, assume that M
is not dense in H. Then the Hahn-Banach theorem implies the existence of a func-
tional 0 6= ϕ ∈ H∗ such that 〈ϕ, u〉H∗,H = 0 for all u ∈ M. From the first hint, we
know that there exists an operator T ∈ L(H∗; H) such that 〈ϕ, u〉H∗,H = (Tϕ, u)H.
But then v = Tϕ 6= 0 satisfies (u, v)H = 0 for all u ∈ M, which is a contradiction.

Now the Lax-Milgram lemma: For every u ∈ H, boundedness and bilinearity of
a implies that v 7→ a(u, v) is a continuous linear functional on H whose norm is
bounded by C‖u‖H and that u 7→ [v 7→ a(u, v)] is a continuous linear mapping
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from H to H∗ whose norm is bounded by C. We denote this mapping by B ∈
L(H; H∗) and set A := TB ∈ L(H). Then we have, for all u, v ∈ H,

(Au, v)H = (TBu, v)H = 〈Bu, v〉H∗,H = a(u, v)

and
〈 f , v〉H∗,H = (T f , v)H.

Hence, u = u f ∈ H is the unique solution to

a(u, v) = 〈 f , v〉H∗,H for all v ∈ H

with ‖u f ‖H ≤ α−1‖ f ‖H∗ if and only if u = A−1T f = B−1 f and ‖B−1‖L(H∗;H) ≤
α−1. So, we need to show that B—or equivalently A, because T is an isometric
isomorphism—is bijective and its inverse is continuous.

We will derive this from the the coercivity of a, which means that

(Au, u)H = a(u, u) ≥ α‖u‖2
H for all u ∈ H,

by showing that A is injective and its range Ran A is dense and closed in H (and
thus must be H). The first consequence of coercivity is injectivity: Indeed, assume
that there is u ∈ H such that Au = 0. Then (Au, u) = 0 which is a contradiction.
Further, coercivity also implies that the image Ran A of A is dense in H: Let v ∈ H
be given and assume that (Au, v)H = 0 for all u ∈ H. Then it follows that v = 0,
since otherwise (Av, v) > 0 due to coercivity, which by the second hint implies
that Ran A is dense in H. Finally, Ran A must also be closed in H: The coercivity
property again implies that α‖u‖2

H ≤ (Au, u)H = ‖Au‖H‖u‖H, so ‖Au‖H ≥
α‖u‖H, for all u ∈ H. Let (Auk) be a sequence in Ran A which converges to some
v ∈ H. We need to show that v ∈ Ran A, i.e., there exists some u ∈ H such that
v = Au. Due to ‖Auk − Au`‖H ≥ α‖uk − u`‖H, the sequence (uk) is a Cauchy
sequence and thus convergent to some u ∈ H. But then continuity of A implies
v = Au, so Ran A is closed.

Altogether, A is bijective and thus, by the open mapping theorem, continuously
invertible with A−1 ∈ L(H). The norm estimate for A−1 follows again from
‖Au‖H ≥ α‖u‖H for all u ∈ H, because using v = A−1u we have

‖A−1u‖H = ‖v‖H ≤ α−1‖Av‖H = α−1‖u‖H for all u ∈ H.

Note how we have derived continuous invertibility alone from the coercivity
property of A. This argument is not limited to the operator A at hand, but works
for every operator satisfying such a coercivity property.

(b) (i) Linearity is obvious and continuity follows quite immediately from by two
applications of the Cauchy-Schwarz inequality, once in Rn and once in L2(Ω):∣∣∣∣∫Ω

(
µ∇u

)
· ∇v dx

∣∣∣∣ ≤ ‖µ‖L∞(Ω;Sn)

∫
Ω
‖∇u‖2‖∇v‖2 dx

≤ ‖µ‖L∞(Ω;Sn)‖∇u‖L2(Ω)‖∇v‖L2(Ω), (5)
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and the observation that ‖∇u‖L2(Ω) and ‖∇v‖L2(Ω) are smaller than or equal
to ‖u‖H1

0 (Ω) and ‖v‖H1
0 (Ω) (in the present case with zero boundary data, the

expressions are in fact equivalent, see the hint for the second part of this
exercise).

(ii) We show that the ellipticity assumption on µ implies that (u, v) 7→ 〈Aµu, v〉
satisfies the assumptions in the Lax-Milgram lemma with H = H1

0(Ω). Bound-
edness was already shown in (5), and coercivity can be seen as follows:

〈Aµu, u〉 =
∫

Ω

(
µ∇u

)
· ∇u dx

≥ µ0

∫
Ω
‖∇u‖2

2 dx = µ0‖∇u‖2
L2(Ω) = µ0‖u‖2

H1
0 (Ω)

.

The Lax-Milgram lemma then yields the assertions about unique solvability
and the norm stability estimate.

Finally, define F : H1
0(Ω)→ R by

F(w) =
1
2

∫
Ω

(
µ∇w

)
· ∇w dx−〈 f , w〉H−1(Ω),H1

0 (Ω) for w ∈ H1
0(Ω).

The function ū ∈ H1
0(Ω) is a solution of the minimization problem (4) if

and only if F′(ū) = 0 in H−1(Ω), or equivalently F′(ū)v = 0 for all v ∈
H1

0(Ω). Since the integral in the definition in F is exactly 1
2 a(w, w), we can

rely on Example 3.3 in the lecture notes which says that the derivative of this
function in w is exactly v 7→ a(w, v), and thus find

F′(w)v =
∫

Ω

(
µ∇w

)
· ∇v dx−〈 f , v〉H−1(Ω),H1

0 (Ω) for all v ∈ H1
0(Ω).

From this expression it is obvious that u f = ū, the solution of (4), because
then F′(u f )v = 0 for all v ∈ H1

0(Ω), and we have already seen that u f is the
unique function in H1

0(Ω) with this property.

Exercise 3 (Projection formula for the optimal control). Consider a bounded domain
Ω ⊂ Rn and the optimal control problem

min
(y,u)∈H1

0 (Ω)×L2(Ω)

1
2

∫
Ω
|y− yd|2 dx+

β

2

∫
Ω
|u|2 dx

s.t. Ay = Eu in H−1(Ω)

(Ell-OCP)

with A ∈ L(H1
0(Ω); H−1(Ω)) and A−1 ∈ L(H−1(Ω); H1

0(Ω)); imagine the divergence-
gradient operators from exercise 2. Moreover, E ∈ L(L2(Ω); H−1(Ω)) denotes the em-
bedding L2(Ω) ↪→ H−1(Ω) and we have yd ∈ L2(Ω) and β > 0.

(a) Show that every feasible pair (y, u) is regular.
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(b) Let (ȳ, ū) be a locally optimal solution of (Ell-OCP). Show that the optimal control
ū is given by

ū(x) = −β−1 p̄(x) for almost all x ∈ Ω,

where p̄ ∈ H1
0(Ω) satisfies A∗ p̄ = ȳ− yd. What does this imply for the regularity

of ū? What if we can show higher H2-regularity properties for A and/or A∗ as in
the example in the lecture notes?

(c) Now assume that there are also control constraints of the form

u ∈ Uad =
{

w ∈ L2(Ω) : a ≤ w ≤ b a.e. on Ω
}

in (Ell-OCP), with L2(Ω)-functions a ≤ b. Show that the optimal control ū then
satisfies

ū(x) = proj[a(x),b(x)]
(
−β−1 p̄(x)

)
for almost all x ∈ Ω.

Make an educated guess about the regularity of ū in this case and how an analo-
gous result to the (control-) unconstrained case could be achieved.

Solution.

(a) We set X = H1
0(Ω)× L2(Ω) and Z = H−1(Ω) together with G(x) = Ay− Eu and

K = {0H−1(Ω)}.

Then G′(x̄) = A−E is surjective for every x̄ ∈ X because A ∈ L(H1
0(Ω); H−1(Ω))

is so: For every f ∈ H−1(Ω) there exists y ∈ H1
0(Ω) such that Ay = f and thus

G′(x̄)(y, 0) = Ay = f . By Proposition 3.18 in the lecture notes, surjectivity is a
constraint qualification.

(b) Since (ȳ, ū) is regular by the foregoing exercise, we know that the KKT conditions
must be satisfied in (ȳ, ū): There exists a Lagrange multiplier λ̄ ∈ (H−1(Ω))∗ =
H1

0(Ω) such that

f ′(x̄) + G′(x̄)∗λ̄ = 0 in H−1(Ω)× L2(Ω),

where we have the Jacobian representation

G′(x̄) =
(

A −E
)

, so G′(x̄)∗ =
(

A∗

−E∗
)

.

Identifying

f : X → R, f (x) = J(y, u) =
1
2

∫
Ω
|Ey− yd|2 dx+

β

2

∫
Ω
|u|2 dx,

where E ∈ L(H1
0(Ω); L2(Ω)) is the embedding H1

0(Ω) ↪→ L2(Ω), we find

f ′(x̄) = J′(ȳ, ū) =
(

E
(
ȳ− yd

)
βū

)
,
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thus the KKT condition translates to (component-wise)

E
(
ȳ− yd

)
+ A∗λ̄ = 0 ⇐⇒ A∗ p̄ = E

(
ȳ− yd

)
in H−1(Ω)

with p̄ := −λ̄ and

βū− E∗λ̄ = ⇐⇒ ū = −β−1E∗ p̄ in L2(Ω).

Here, E∗ = E is exactly the embedding H1
0(Ω) ↪→ L2(Ω) (why?), hence

ū(x) = −β−1 p̄(x) for almost all x ∈ Ω

follows. In particular, ū is also an H1
0(Ω) function!

Concerning regularity: Since the right-hand side in the equation for p̄ is in fact
from L2(Ω), we would even get p̄ and thus ū ∈ H2(Ω) ∩ H1

0(Ω) if we had higher
regularity for A∗. Note that we could also “bootstrap” the regularity of ȳ if A
itself admitted higher regularity, since ȳ satisfies Aȳ = ū ∈ L2(Ω), from which
we could get ȳ ∈ H2(Ω) ∩ H1

0(Ω).

If yd was in fact also more regular than L2(Ω), improved regularity for ȳ would
imply that the right-hand side in A∗ p̄ = ȳ− yd is better, and then we could hope
for more regularity of p̄, implying even more for ū, thus for ȳ and so on . . . This
shows that higher-regularity results can be particularly useful in an optimal con-
trol setting because all occurring quantities are linked by differential operators
which allows to bootstrap regularities.

(c) Coming from the foregoing exercise, we modify G to G(x) = (Ay−Eu
u ) and Z to

Z = H−1(Ω)× L2(Ω) as well as K = {0H−1(Ω)} ×Uad. We have already seen in
the lecture notes that every feasible point is still regular due to the surjectivity of
the second component of G (and the properties of A); this was in Example 3.37.
Note moreover that, using the Jacobian representation,

G′(x̄) =
(

A −E
0 idL2(Ω)

)
, so G′(x̄)∗ =

(
A∗ 0
−E∗ idL2(Ω)

)
.

For the new problem, there now exists a Lagrange multiplier pair ( p̄, µ̄) ∈ H1
0(Ω)×

L2(Ω) such that, using already the transformation from the foregoing exercise,

A∗ p̄ = E
(
ȳ− yd

)
in H−1(Ω)

and
ū + µ̄ = −β−1E∗ p̄ in L2(Ω). (6)

Additionally, there is the constraint µ̄ ∈ T(Uad, ū)◦. In the lecture notes (Exam-
ple 3.37), we have already identified this polar cone to be

T(Uad, ū)◦ =
{

s ∈ L2(Ω) : s|[ū=a] ≤ 0, s[ū=b] ≥ 0, s[a<ū<b] = 0
}

.
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We use this together with (6) to derive the projection formula:

Suppose that ū(x) < −β−1 p̄(x) for some x ∈ Ω. This is equivalent to µ̄(x) > 0
which implies ū(x) = b(x). Conversely, ū(x) > −β−1 p̄(x) is equivalent to µ̄(x) <
0 and thus we must already have ū(x) = a(x). If ū(x) = −β−1 p̄(x), then µ̄(x) = 0
and we cannot say anything more than a(x) ≤ ū(x) ≤ b(x), which we already
know by feasibility of ū. We collect these properties and rewrite them to obtain
the projection formula:

ū(x) =


b(x) if b(x) < −β−1 p̄(x),
a(x) if a(x) > −β−1 p̄(x),
−β−1 p̄(x) if a(x) ≤ −β−1 p̄(x) ≤ b(x)

= proj[a(x),b(x)]
(
−β−1 p̄(x)

)
.

Now, ū given by this projection formula will in general not be an H1
0(Ω) function,

since a and b are only L2(Ω) functions; an instructive way to see this is to imagine
that −β−1 p̄ ≥ b and thus ū = b on Ω. On the other hand, this way of thinking
shows that there is hope if a, b ∈ H1

0(Ω). If a, b are in fact constant, then one can
show that ū inherits the H1

0(Ω)-regularity quite immediately, but the general case
is also true.

On the other hand, there is no hope to obtain higher H2-regularity because the
projection is generally “only” Lipschitz-continuous, and it is known that the com-
position of Lipschitz- and H2-functions does not preserve H2-regularity.

Exercise 4 (Partial ordering induced by pointed cone). Let X be a Banach space and let
K ⊂ X be a closed convex and pointed cone, that is, K ∩ (−K) = {0}. Show that the
relation ≤K given by

x1 ≤K x2 ⇐⇒ x2 − x1 ∈ −K

is a partial ordering, that is, it is reflexive, anti-symmetric and transitive. Convince your-
self that you are allowed to cancel positive factors α on both sides.

Solution. First of all if αx1 ≤K αx2 for some α > 0, then α(x2 − x1) ∈ −K, and since K
(and thus also −K) is a cone, 1

α α(x2 − x1) ∈ −K, hence αx1 ≤K αx2.

For the partial ordering property, we collect the three properties:

• Reflexivity: Since x − x = 0 ∈ −K since K is closed, we have x ≤K x for every
x ∈ X.

• Anti-symmetry: Let x1, x2 ∈ X be related by x1 ≤K x2 and x2 ≤K x1. Then
x2 − x1 ∈ −K by the first relation and x1 − x2 ∈ −K by the second. The latter
means that x2 − x1 ∈ K, so from the pointed property of K we infer that x1 − x2 =
x2 − x1 = 0, hence x1 = x2.
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• Transitivity: Let x1, x2, x3 ∈ X be related by x1 ≤K x2 and x2 ≤K x3. Then we
know that x2 − x1 ∈ −K as well as x3 − x2 ∈ −K. Since K is a convex set, we infer
that

1
2
(x3 − x1) =

1
2
(x3 − x2) +

1
2
(x2 − x1) ∈ −K,

and since K is a cone, this also implies x3 − x1 ∈ −K. Hence, x1 ≤K x3.

Note how we have used each property of the set K in the proof: Closedness (and the
cone definition, but 0 ∈ K would have been sufficient) for reflexivity, pointedness for
anti-symmetry and convexity and being a cone for transitivity.
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