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Exercise 1 (Linear operators in multiple components, Jacobian, KKT-conditions). Let
X1, . . . , Xn and Z1, . . . , Zm be Banach spaces and set X := X1 × · · · × Xn as well as
Z := Z1 × · · · × Zm. Consider an operator A ∈ L(X; Z).

(a) Show that A uniquely corresponds to an m × n-operator-matrix A = (Aij) of
continuous linear operators Aij ∈ L(Xj; Zi) such that

Ax = A

x1
...

xn

 for x = (x1, . . . , xn) with xi ∈ Xi,

and that A 7→ ∑m
i=1 max1≤j≤n ‖Aij‖L(Xj;Zi) is an equivalent norm to ‖ · ‖L(X;Z).

(b) Show that X∗ = X∗1 × · · · × X∗n and Z∗ = Z∗1 × · · · × Z∗m and determine the
operator-matrix corresponding to A∗ ∈ L(Z∗; X∗).

(c) Let G : X → Z be F-differentiable around x̄ ∈ X. Show that the operator-matrix
G ′(x̄) of G′(x̄) is exactly a generalized Jacobian matrix of G in x̄.

(d) Let (ȳ, ū) be a regular point of the control-constrained optimal control problem

min
(y,u)∈Y×U

J(y, u) s.t. E(y, u) = 0, u ∈ Uad,

where J : Y ×U → R and E : Y ×U → Z are F-differentiable, Y, U, Z are Banach
spaces, and Uad is closed and convex. Apply the above results to the multiplier
rule in the KKT-conditions of this problem for (ȳ, ū).

Remark: Recall (or verify) that every norm ‖ · ‖α on Rn constructed in the form ‖x‖ =
f (|x1|, . . . , |xn|) for x ∈ Rn also gives rise to a norm ‖x‖α,X = f (‖x1‖X1 , . . . , ‖xn‖Xn)
on X, for example ‖(x1, . . . , xn)‖1,X := ∑n

i=1 ‖xi‖Xi , and all these norms are equiva-
lent because the ones on Rn are; an analogous result of course holds for Z and Rm.
For convenience, we always choose the norm induced by the ‖ · ‖1-norm on the finite-
dimensional space.

Exercise 2 (Lax-Milgram lemma and divergence-gradient operators). Let H be a Hilbert
space and consider a continuous coercive bilinear form a : H × H → R on H, which
means that there exist constants C, α > 0 such that

|a(u, v)| ≤ C‖u‖H‖v‖H for all u, v ∈ H (continuity/boundedness)

and

a(u, u) ≥ α‖u‖2
H for all u ∈ H (coercivity).
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(a) Prove the world-famous Lax-Milgram lemma: For every f ∈ H∗, there exists a
unique u = u f ∈ H such that

a(u, v) = 〈 f , v〉H∗,H for all v ∈ H

and there holds ‖u f ‖H ≤ α−1‖ f ‖H∗ .

Hints:

(i) Recall the also world-famous Fréchet-Riesz representation theorem: There is a
continuous linear isometric isomorphism T ∈ L(H∗; H) such that, for all
g ∈ H∗, we have 〈g, v〉H∗,H = (Tg, v)H for all v ∈ H.

(ii) Let M ⊆ H. Then (u, v)H = 0 for all u ∈ M implies v = 0 if and only if M is
dense in H. (Prove this if needed!)

(b) Let Ω ⊂ Rn be a bounded domain and let µ ∈ L∞(Ω; Sn), where Sn is the set of
symmetric real n × n-matrices equipped with the operator-norm inherited from
‖ · ‖2 on Rn.

(i) Show that the weak divergence-gradient operator Aµ given by

〈Aµu, v〉 :=
∫

Ω

(
µ∇u

)
· ∇v dx for all v ∈ H1

0(Ω)

for u ∈ H1
0(Ω) is a linear continuous operator H1

0(Ω)→ H−1(Ω) = H1
0(Ω)∗.

(ii) Suppose that there is µ0 > 0 such that µ additionally satisfies

vTµv ≥ µ0‖v‖2
2 for all v ∈ Rn for almost all x ∈ Ω.

Show that then for every f ∈ H−1(Ω) there is a unique solution u = u f ∈
H1

0(Ω) of the weak formulation∫
Ω

(
µ∇u

)
· ∇v dx = 〈 f , v〉H−1(Ω),H1

0 (Ω) for all v ∈ H1
0(Ω)

of the elliptic second-order partial differential equation

−div (µ∇u) = f in Ω,
u = 0 on ∂Ω.

(This equation is to be seen formally, because µ and f are too general for the
equation to be interpreted in a classic sense.) The function u = u f moreover
satisfies ‖u f ‖H1

0 (Ω) ≤ µ−1
0 ‖ f ‖H−1(Ω), so A−1

µ ∈ L(H−1(Ω); H1
0(Ω)), and it is

also the unique solution of the minimization problem

min
w∈H1

0 (Ω)

1
2

∫
Ω

(
µ∇w

)
· ∇w dx−〈 f , w〉H−1(Ω),H1

0 (Ω). (1)

Hint: Recall that u 7→ ‖∇u‖L2(Ω) is an equivalent norm on H1
0(Ω).
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Exercise 3 (Projection formula for the optimal control). Consider a bounded domain
Ω ⊂ Rn and the optimal control problem

min
(y,u)∈H1

0 (Ω)×L2(Ω)

1
2

∫
Ω
|y− yd|2 dx+

β

2

∫
Ω
|u|2 dx

s.t. Ay = Eu in H−1(Ω)

(Ell-OCP)

with A ∈ L(H1
0(Ω); H−1(Ω)) and A−1 ∈ L(H−1(Ω); H1

0(Ω)); imagine the divergence-
gradient operators from exercise 2. Moreover, E ∈ L(L2(Ω); H−1(Ω)) denotes the em-
bedding L2(Ω) ↪→ H−1(Ω) and we have yd ∈ L2(Ω) and β > 0.

(a) Show that every feasible pair (y, u) is regular.

(b) Let (ȳ, ū) be a locally optimal solution of (Ell-OCP). Show that the optimal control
ū is given by

ū(x) = −β−1 p̄(x) for almost all x ∈ Ω,

where p̄ ∈ H1
0(Ω) satisfies A∗ p̄ = ȳ− yd. What does this imply for the regularity

of ū? What if we can show higher H2-regularity properties for A and/or A∗ as in
the example in the lecture notes?

(c) Now assume that there are also control constraints of the form

u ∈ Uad =
{

w ∈ L2(Ω) : a ≤ w ≤ b a.e. on Ω
}

in (Ell-OCP), with L2(Ω)-functions a ≤ b. Show that the optimal control ū then
satisfies

ū(x) = proj[a(x),b(x)]
(
−β−1 p̄(x)

)
for almost all x ∈ Ω.

Make an educated guess about the regularity of ū in this case and how an analo-
gous result to the (control-) unconstrained case could be achieved.

Exercise 4 (Partial ordering induced by pointed cone). Let X be a Banach space and let
K ⊂ X be a closed convex and pointed cone, that is, K ∩ (−K) = {0}. Show that the
relation ≤K given by

x1 ≤K x2 ⇐⇒ x2 − x1 ∈ −K

is a partial ordering, that is, it is reflexive, anti-symmetric and transitive. Convince your-
self that you are allowed to cancel positive factors α on both sides.
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