Exercise 1 (Robinson's CQ for particular problems). Let $\bar{x} \in \mathcal{F} = G^{-1}[K]$ be given with $G: X \to Z$ F-differentiable, where

$$G = \begin{pmatrix} G_1 \\ G_2 \end{pmatrix} : X \to Z_1 \times Z_2 \text{ and } K = K_1 \times K_2 \quad (K_i \subseteq Z_i, i = 1, 2),$$

- (a) Show that if $G'(\bar{x})$ is surjective, then (ACQ) is satisfied, i.e., surjectivity is a constraint qualification.
- (b) Let $G'_1(\bar{x}) \in \mathcal{L}(X; Z_1)$ be surjective.
 - (i) Show that (RCQ) for \bar{x} is equivalent to

$$0 \in \operatorname{int} \left(G_2(\bar{x}) + G_2'(\bar{x}) \left(G_1'(\bar{x})^{-1} \left[K_1 - G_1(\bar{x}) \right] \right) - K_2 \right).$$
(1)

(ii) Assume additionally that int $K_2 \neq \emptyset$. Show that then (RCQ) for \bar{x} is equivalent to the existence of $h \in X$ such that

$$G_{1}(\bar{x}) + G'_{1}(\bar{x})h \in K_{1},$$

$$G_{2}(\bar{x}) + G'_{2}(\bar{x})h \in \text{int } K_{2}.$$
(2)

- (c) Assume that $K_1 = \{0_{Z_1}\}$.
 - (i) Let the constraint $G_2(x) \in K_2$ be void, so non-existent or trivial. Show that then (RCQ) is satisfied in \bar{x} if and only if $G'_1(\bar{x})$ is surjective, and that $T(\mathcal{F}, \bar{x}) = \ker G'_1(\bar{x})$ in this case.

Remark: This statement is also known as Ljusternik's theorem.

(ii) Let int $K_2 \neq \emptyset$. Show that \bar{x} satisfies (RCQ) if and only if $G'_1(\bar{x}) \in \mathcal{L}(X; Z_1)$ is surjective and there exists $h \in \ker G'_1(\bar{x})$ such that

$$G_2(\bar{x}) + G'_2(\bar{x})h \in \text{int } K_2,$$

and that in this case

$$T(\mathcal{F}, \bar{x}) = \ker G_1'(\bar{x}) \cap T(G_2^{-1}[K_2], \bar{x}) = \ker G_1'(\bar{x}) \cap T_\ell(G_2, K_2, \bar{x}).$$

(iii) Give another proof of the equivalence of (RCQ) and the (MFCQ) for classical NLPs.

Solution. For convenience, we write down (RCQ) for $\bar{x} \in \mathcal{F} = G^{-1}[K]$ again:

$$0 \in \operatorname{int} \left(G(\bar{x}) + G'(\bar{x})X - K \right) = \operatorname{int} \left(\begin{pmatrix} G_1(\bar{x}) \\ G_2(\bar{x}) \end{pmatrix} + \begin{pmatrix} G'_1(\bar{x})X \\ G'_2(\bar{x})X \end{pmatrix} - \begin{pmatrix} K_1 \\ K_2 \end{pmatrix} \right)$$
(RCQ)

(a) If $G'(\bar{x})$ is surjective, then $0 \in \text{int } G'(\bar{x})X = Z$. On the other hand, $Z = Z + G(\bar{x}) - K$ and thus

$$0 \in \operatorname{int} \left(G(\bar{x}) + G'(\bar{x})X - K \right),$$

so (RCQ) in \bar{x} is satisfied. Since (RCQ) implies (ACQ), this shows the assertion.

(b) (i) (RCQ) \implies (1): Let (RCQ) for \bar{x} be satisfied. Then there exists $\varepsilon > 0$ such that for all $z = \binom{z_1}{z_2} \in Z_1 \times Z_2$ with $||z_i||_{Z_i} < \varepsilon$ there is $h \in X$ such that

$$z_i \in G_i(\bar{x}) + G'_i(\bar{x})h - K_i.$$

For i = 1, this means that $h \in G'_1(\bar{x})^{-1}[G_1(\bar{x}) - K_1 - z_1]$. Re-inserting shows that

$$z_{2} \in G_{2}(\bar{x}) + G_{2}'(\bar{x})h - K_{2} \subseteq G_{2}(\bar{x}) + G_{2}'(\bar{x}) \Big(G_{1}'(\bar{x})^{-1} \big[G_{1}(\bar{x}) - K_{1} - z_{1} \big] \Big) - K_{2}$$

Now choosing $z_1 = 0$ and $z_2 \in B_{\varepsilon, Z_2}(0)$ arbitrarily yields

$$B_{\varepsilon,Z_2}(0) \subseteq G_2(\bar{x}) + G'_2(\bar{x}) \Big(G'_1(\bar{x})^{-1} \big[G_1(\bar{x}) - K_1 \big] \Big) - K_2,$$

which is exactly (1). We have not used surjectivity of $G'_1(\bar{x})$ for this implication.

For the reverse implication (1) \implies (RCQ), let

$$0 \in \operatorname{int} \left(G_2(\bar{x}) + G_2'(\bar{x}) \left(G_1'(\bar{x})^{-1} \left[G_1(\bar{x}) - K_1 \right] \right) - K_2 \right).$$
(1)

Consider $z = \binom{z_1}{z_2} \in Z$. We need to show that there exists $h \in X$ such that

$$z_i \in G_i(\bar{x}) + G'_i(\bar{x})h - K_i$$

for $||z_i||_{Z_i}$ sufficiently small. Due to $G'_1(\bar{x})$ being surjective, there exists $h_1 \in X$ such that $G'_1(\bar{x})h_1 = z_1$ for every $z_1 \in Z_1$. Hence, we can restrict ourselves to searching $h_2 \in X$ such that

$$G'_1(\bar{x})h_2 \in K_1 - G_1(\bar{x}) \iff h_2 \in G'_1(\bar{x})^{-1} [K_1 - G_1(\bar{x})]$$

and

$$z_2 - G'_2(\bar{x})h_1 \in G_2(\bar{x}) + G'_2(\bar{x})h_2 - K_2$$

because then $h = h_1 + h_2$ is the searched-for element of *X*.

Assumption (1) indeed means exactly that there exists such an $h_2 \in X$, provided that the norm $||z_2 - G'_2(\bar{x})h_1||_{Z_2}$ is sufficiently small, say smaller than

 $\varepsilon > 0$. Now, z_2 is not a problem because we are free to choose its norm as small as needed, for instance $||z_2||_{Z_2} \leq \frac{\varepsilon}{4}$. For $||G'_2(\bar{x})h_1||_{Z_2}$, we argue why we can achieve

$$\|h_1\|_X \le \frac{\varepsilon}{4} \|G'_2(\bar{x})\|_{\mathcal{L}(X;Z_2)}^{-1}$$

such that, by continuity of $G'_2(\bar{x})$, we have

$$\|G'_2(\bar{x})h_1\|_{Z_2} \leq \|G'_2(\bar{x})\|_{\mathcal{L}(X;Z_2)}\|h_1\|_X \leq \frac{\varepsilon}{4}.$$

The open mapping theorem tells us that $0 \in \text{int } G'_1(\bar{x})B_{r,X}(0)$ for any r > 0, so for every r > 0 there exists $\delta = \delta(r)$ such that $B_{\delta(r),Z}(0) \subset G'_1(\bar{x})B_{r,X}(0)$. Read upside down, this means that every z_1 of norm smaller than $\delta(r)$ can be expressed by $z_1 = G'_1(\bar{x})h_1$ with $||h_1||_X < r$. Now choosing

$$r = \frac{\varepsilon}{4} \left\| G_2'(\bar{x}) \right\|_{\mathcal{L}(X;Z_2)}^{-1}$$

yields

$$||z_2 - G'_2(\bar{x})h_1||_{Z_2} \le ||z_2||_{Z_2} + ||G'_2(\bar{x})h_1||_{Z_2} \le \frac{\varepsilon}{2}$$

and thus

$$z_2 - G_2'(\bar{x})h_1 \in G_2(\bar{x}) + G_2'(\bar{x})h_2 - K_2$$

(ii) The proof works exactly as the one of Lemma 3.17 from the lecture notes (equivalence of LSCQ and RCQ). Let int $K_2 \neq \emptyset$. We first show (2) \implies (RCQ), so let (2) be satisfied. Then there exists $\varepsilon > 0$ such that

$$G(\bar{x}) + G'(\bar{x})h + \begin{pmatrix} 0\\ B_{\varepsilon,Z_2}(0) \end{pmatrix} \subseteq K,$$

hence

$$\binom{0}{B_{\varepsilon,Z_2}(0)} \subseteq G(\bar{x}) + G'(\bar{x})h - K \subseteq G(\bar{x}) + G'(\bar{x})X - K_{\varepsilon,Z_2}(\bar{x})K -$$

which implies (RCQ).

Next we show (RCQ) \implies (2). Assume that (2) does not hold, which means that the convex sets $G_2(\bar{x}) + G'_2(\bar{x}) (G'_1(\bar{x})^{-1} [K_1 - G_1(\bar{x})])$ and int K_2 have empty intersection and we can separate them with a hyperplane $[z' = \alpha]$ to obtain

$$\langle z', G_2(\bar{x}) + G'_2(\bar{x})h - v \rangle_{Z^*, Z} \ge 0$$
 for all $h \in G'_1(\bar{x})^{-1}[K_1 - G_1(\bar{x})], v \in K_2.$

Choosing $z \in Z$ with $\langle z', z \rangle_{Z^*,Z} < 0$ and observing $\langle z', tz \rangle_{Z^*,Z} < 0$ for all t > 0 gives a contradiction to (RCQ) in the equivalent form (1), since we can choose t small enough such that $tv \in B_{\varepsilon}(0)$ for given ε , but from $\langle z', tz \rangle_{Z^*,Z} < 0$ we know that

$$tv \notin G_2(\bar{x}) + G'_2(\bar{x}) (G'_1(\bar{x})^{-1} [K_1 - G_1(\bar{x})]) - K_2.$$

(c) (i) For $K_1 = \{0\}$ and the second set of constraints void, (RCQ) is just (recall $G_1(\bar{x}) \in K_1 = \{0\}$)

$$0 \in \operatorname{int} \left(G_1'(\bar{x})X \right). \tag{RCQ}_0$$

If $G'_1(\bar{x})$ is surjective, then $G'_1(\bar{x})X = Z_1$ and (RCQ₀) is trivially satisfied. Let conversely (RCQ₀) be true and let $z \in Z_1$. Choosing $\varepsilon > 0$ sufficiently small, there exists $h \in X$ such that

$$\varepsilon z = G_1'(\bar{x})h.$$

But then

$$z = G_1'(\bar{x})\varepsilon^{-1}h,$$

hence *z* lies in the range of $G'_1(\bar{x})$. Since $z \in Z_1$ was arbitrary, $G'_1(\bar{x})$ is surjective.

Since we now know that (RCQ) and thus the ACQ holds true, we have

$$T(\mathcal{F},\bar{x}) = T_{\ell}(G_1,\{0\},\bar{x}) = \Big\{ d \in X \colon G_1'(\bar{x})d \in \operatorname{cone}(\{0\},G_1(\bar{x})) \Big\}.$$

But cone({0}, $G_1(\bar{x})$) = {0}, hence the foregoing sets are exactly ker $G'_1(\bar{x})$.

- (ii) This is yet again exactly the same argument as in Lemma 3.17 in the lecture notes or in (ii). The representation for $T(\mathcal{F}, \bar{x})$ follows as in the foregoing exercise.
- (iii) For a classical NLP, we identify as usual $X = \mathbb{R}^n$, $Z = Z_1 \times Z_2 = \mathbb{R}^p \times \mathbb{R}^m$, $G_1 = h: \mathbb{R}^n \to \mathbb{R}^p$ and $G_2 = g: \mathbb{R}^n \to \mathbb{R}^m$ as well as $K_1 = \{0\}^p$ as well as $K_2 = (-\infty, 0]^m$, where also clearly int $K_2 = (-\infty, 0) \neq \emptyset$. Then the constraints are given exactly by h(x) = 0 and $g(x) \le 0$. The foregoing exercise shows that (RCQ) for \bar{x} satisfying $h(\bar{x}) = 0$ and $g(\bar{x}) \le 0$ is equivalent $\nabla h(\bar{x})^T$ being surjective and the existence of $d \in \mathbb{R}^n$ such that

$$abla h(ar{x})^T d = 0$$
 and $g(ar{x}) +
abla g(ar{x})^T d < 0.$

The latter translates to $g_i(\bar{x}) + \nabla g_i(\bar{x})^T d < 0$ for all i = 1, ..., m. For $g_i(\bar{x}) = 0$, i.e., for $i \in \mathcal{A}(\bar{x})$, this is true if and only if $\nabla g_i(\bar{x})^T d < 0$, which shows already the MFCQ. Conversely, assuming MFCQ, we can achieve $g_i(\bar{x}) + \nabla g_i(\bar{x})^T d < 0$ for $i \notin \mathcal{A}(\bar{x})$, where it could happen that $\nabla g_i(\bar{x})^T d > 0$, by scaling *d* appropriately as in Example 3.16 in the lecture notes.

Exercise 2 (Polar cone). Let $\emptyset \neq C \subseteq X$ be a given set and consider its polar cone

$$C^{\circ} := \{ x' \in X^* \colon \langle x', x \rangle_{X^*, X} \le 0 \text{ for all } x \in C \}.$$

- (a) Show that C° is a nonempty closed convex cone.
- (b) Show that $\overline{C}^{\circ} = C^{\circ}$.

(c) Now assume that *C* is convex. Show that $C^{\circ} = \operatorname{cone}(C)^{\circ}$.

Solution.

(a) The polar cone C° is nonempty because clearly $0 \in C^{\circ}$. It is also closed as the (infinite) intersection of the closed convex sets

$$C^{\circ} = \bigcap_{x \in C} f_x^{-1} [(-\infty, 0]], \text{ where } f_x \in X^{**} \colon f_x(x') := \langle x', x \rangle$$

Here, the sets $f_x^{-1}[(-\infty, 0]]$ are closed because they are the preimage of the closed set $(-\infty, 0]$ under the continuous function f_x , and they are convex because f_x is a linear mapping.

(b) Let $x' \in \overline{C}^{\circ}$ be given. Then $x' \in C^{\circ}$ follows from $C \subseteq \overline{C}$. Conversely, let $x' \in C^{\circ}$ and $x \in \overline{C}$. Then there exists a sequence $(x_k) \subseteq C$ such that $x_k \to x$ and

$$\langle x', x \rangle_{X^*, X} = \lim_{k \to \infty} \langle x', x_k \rangle_{X^*, X} \leq 0$$

due to continuity of x'. Hence, $x' \in \overline{C}^{\circ}$.

(c) Let $x' \in \operatorname{cone}(C)^{\circ}$. Then $x' \in C^{\circ}$ follows from $C \subseteq \operatorname{cone}(C)$. Conversely, let $x' \in C^{\circ}$ and $y \in \operatorname{cone}(C)$. Then there exist $\lambda > 0$ and $x \in C$ such that $y = \lambda x$ and thus

$$\langle x', y \rangle_{X^*, X} = \lambda \langle x', x \rangle_{X^*, X} \leq 0.$$

Exercise 3 (Interior of an important cone). Let *X* be a function space over the set $\Omega \subset \mathbb{R}^n$ and consider the cone of nonpositive functions in *X*:

$$K_{-} := \Big\{ f \in X \colon f(x) \le 0 \text{ for all } x \in \Omega \Big\}.$$

Determine whether K_{-} has nonempty interior for the choices $X = L^{p}(\Omega)$ for $1 \le p \le \infty$ and $X = C(\overline{\Omega})$.

Solution. Let $f \in K_-$.

1. Let $1 \le p < \infty$ as well as $y \in \Omega$ and $\varepsilon > 0$ be given. We show that there exists a function g with $||f - g||_{L^p(\Omega)} \le \varepsilon$, but $g \notin K_-$. Let ρ be small enough such that if $||x - y||_{\infty} < \rho$, then $x \in \Omega$, and set $\delta = \min(\rho, \varepsilon^{\frac{p}{n}})$ as well as

$$g: \Omega \to \mathbb{R}, \quad g(x) := f(x) + \chi_{B_{\delta,\infty}(y)}(x) = \begin{cases} f(x) + 1 & \text{if } ||x - y||_{\infty} < \delta, \\ f(x) & \text{otherwise.} \end{cases}$$

Then we have $g \in L^p(\Omega)$ and

$$\|f-g\|_{L^{p}(\Omega)}^{p}=\int_{B_{\delta,\infty}(y)}1\,\mathrm{d} x=\delta^{n}\leq\varepsilon^{p}$$

due to the choice of $\delta \leq \varepsilon^{\frac{p}{n}}$. This shows that K_{-} has empty interior in $L^{p}(\Omega)$ for $1 \leq p < \infty$.

2. Let $\varepsilon > 0$ be arbitrary and assume that $f(x) < -\varepsilon$ for all (if $X = C(\overline{\Omega})$) or almost all (if $X = L^{\infty}(\Omega)$) $x \in \Omega$, respectively. Let $g \in B_{\varepsilon,X}(f)$. Then it follows that

$$g(x) = g(x) - f(x) + f(x) \le |g(x) - f(x)| + f(x) < \varepsilon - \varepsilon = 0$$
 for (almost) all $x \in \Omega$,

hence $g \in K_-$. This means that K_- has nonempty interior in the spaces $L^{\infty}(\Omega)$ or $C(\overline{\Omega})$.

Exercise 4 (Topological properties of convex sets). Let $\emptyset \neq C \subseteq X$ be a convex set. For two points $x, y \in X$ we set

$$[x,y) = \{(1-\lambda)x + \lambda y \colon \lambda \in [0,1)\},\$$

so the set of convex combinations between *x* and *y* not including *y*.

- (a) Show that $[x, y) \subset$ int *C* for $x \in$ int *C* and $y \in \overline{C}$. Infer that int *C* is convex. **Hint**: It will be easier to first show the assertion for $y \in C$ and then extend the proof to $y \in \overline{C}$.
- (b) Show that int $C = \operatorname{int} \overline{C}$ if int *C* is nonempty.

Hint: There are multiple ways to solve this. Find at least two proofs. One possibility: Assume the contrary and use the geometric version of the Hahn-Banach theorem to construct a point $z \in \partial C$ with an open neighborhood whose intersection with *C* is empty (which is a contradiction, why?).

Remark: If the set *C* is even *convex-series* closed (*cs*-closed)—that means: For any sequences $(x_k) \subseteq C$ and $(\lambda_k) \ge 0$ with $\sum_{k=1}^{\infty} \lambda_k = 1$ for which $x = \sum_{k=1}^{\infty} \lambda_k x_k$ exists in *X*, we have $x \in C$ —, then in fact int $C = \text{int } \overline{C}$. Such *cs*-closed sets are always trivially convex, and open or closed convex sets are also *cs*-closed. How does this fit with the assertion in (b)?

Solution.

(a) If int $C = \emptyset$, there is nothing to prove. Otherwise, let $x \in \text{int } C$ and $y \in \overline{C}$ and set $z := (1 - \lambda)x + \lambda y$ for some $0 < \lambda < 1$. We need to show that there exists $\varepsilon > 0$ such that $B_{\varepsilon}(z) \subseteq C$. So let $\varepsilon > 0$ be fixed for now, to be determined later, and choose some $v \in B_{\varepsilon}(z)$. In order so show that $v \in C$, we try to express it as a convex combination of elements of *C*.

Firstly assuming $y \in C$, we use y itself and some element \bar{x} from a neighborhood of x. Let δ_x be such that $B_{\delta_x}(x) \subset X$ (this must exist because $x \in \text{int } C$). We make the ansatz

$$v = (1 - \alpha)\bar{x} + \alpha y \quad \iff \quad \bar{x} = \frac{1}{1 - \alpha} (v - \alpha y)$$

for some $0 < \alpha < 1$, also to be determined. In order to have $\bar{x} \in B_{\delta_x}(x)$, we calculate

$$||x - \bar{x}|| = \frac{1}{1 - \alpha} ||(1 - \alpha)x - v + \alpha y||$$

and we have $(1 - \alpha)\bar{x} + \alpha y = z$ exactly if $\alpha := \lambda$. So of course we set this and obtain

$$\left\|x-\bar{x}\right\| = \frac{1}{1-\lambda} \|z-v\| < \frac{\varepsilon}{1-\lambda}.$$

This shows that with $\varepsilon := (1 - \lambda)\delta_x$, we have $\bar{x} \in C$ and thus $v = (1 - \lambda)\bar{x} + \lambda y \in C$. Since $v \in B_{\varepsilon}(z)$ was arbitrary, this shows $B_{\varepsilon}(z) \subset C$ and thus $z \in \text{int } C$.

Now assume that only $y \in \overline{C}$. Since then possibly $y \notin C$, we cannot use y itself as an element to express z as a convex combination. However, if $y \notin C$, then $y \in \partial C$ and thus $B_{\delta_y}(y) \cap C \neq \emptyset$ for every $\delta_y > 0$ by the definition of a boundary point. We thus choose $\overline{y} \in B_{\delta_y}(y) \cap C$ and $\overline{x} \in B_{\delta_x}(x)$ with $\delta_x > 0$ as above and set, analogously to the first case above,

$$v = (1 - \lambda) \bar{x} + \lambda \bar{y} \quad \Longleftrightarrow \quad \bar{x} = rac{1}{1 - \lambda} (v - \lambda \bar{y}).$$

We have already chosen the λ -convex combination as above. Now calculate again

$$\begin{aligned} \|x - \bar{x}\| &= \frac{1}{1 - \lambda} \|(1 - \lambda)x - v + \lambda \bar{y}\| = \frac{1}{1 - \lambda} \|\underbrace{(1 - \lambda)x + \lambda y}_{=z} - v + \lambda(\bar{y} - y)\| \\ &\leq \frac{1}{1 - \lambda} \Big(\|z - v\| + \lambda \|\bar{y} - y\| \Big). \end{aligned}$$

Recall that $\|\bar{y} - y\| < \delta_y$ and that we are free to choose $\delta_y > 0$ because of the boundary point property for *y*. In particular, we are allowed to choose it depending on $\|z - v\|$, which we do by setting

$$\delta_y := rac{1}{\lambda} \Big((1-\lambda) rac{\delta_x}{2} - \|z-v\| \Big),$$

which makes $||x - \bar{x}|| < \delta_x$. In order to have $\delta_y > 0$, this requires ε to be chosen as e.g. $\varepsilon := (1 - \lambda)\frac{\delta_x}{2}$. Then we have altogether $v = (1 - \lambda)\bar{x} + \lambda\bar{y}$ with $\bar{x}, \bar{y} \in C$ and thus $v \in C$. Since $v \in B_{\varepsilon}(z)$ was arbitrary, we have $B_{\varepsilon}(z) \subset C$ and thus $z \in$ int C.

- (b) It is clear that int $C \subseteq \operatorname{int} \overline{C}$, so we only have to prove the reverse inclusion.
 - a) First proof following the hint: Assume that there is a point $x \in \text{int } \overline{C} \setminus \text{int } C$. Since by the first part of the exercise int *C* is convex and obviously open as well as nonempty by assumption, there exists a hyperplane $[f = \alpha]$ separating int *C* and *x*, i.e.,

$$\langle f, x \rangle_{X^*, X} \ge \alpha \ge \langle f, y \rangle_{X^*, X}$$
 for all $y \in C$.

(The inequality is in fact true for all $y \in C$ instead of only $y \in$ int C due to the non-strict separation.) Since x was assumed to be from int \overline{C} , there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq \overline{C}$. We set $D := B_{\varepsilon}(x) \cap [f > \alpha]$.

Then *D* is nonempty: Assume that $\langle f, \bar{y} \rangle \leq \alpha$ for all $\bar{y} \in B_{\varepsilon}(x)$, or equivalently $\langle f, x + y \rangle \leq \alpha = \langle f, x \rangle$ for all $y \in B_{\varepsilon}(0)$. Then $\langle f, y \rangle \leq 0$, which means that $\langle f, -y \rangle \geq 0$ and thus $\langle f, x - y \rangle \geq \alpha$ for all $y \in B_{\varepsilon}(0)$. From this it follows that $\langle f, x + y \rangle = \alpha$ and thus $\langle f, y \rangle = 0$ for all $y \in B_{\varepsilon}(0)$. This finally implies f = 0 in X^* , which is a contradiction to the definition of a hyperplane. Hence, *D* is nonempty.

Choose a point $z \in D$. Since D, as the intersection of two open sets, is open, there exists $\delta > 0$ such that $B_{\delta}(z) \subseteq D$. Moreover, $D \cap C = \emptyset$ by definition of D. On the other hand, $z \in B_{\varepsilon}(x) \subseteq \overline{C}$, hence $z \in \overline{C} \setminus C \subseteq \partial C$. But then $B_{\delta}(z)$ is an open neighborhood of the boundary point z of C which has empty intersection with C. Such a neighborhood cannot exist by the definition of a boundary point.

b) A more direct proof, using (a): Let $x \in \text{int } \overline{C}$. Since int $C \neq \emptyset$, there exists $y \in \text{int } C$, and since $x \in \text{int } \overline{C}$, there is $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq \overline{C}$. We express x as a convex combination of $\overline{x} \in B_{\varepsilon}(x)$ and y with the ansatz

$$x = (1 - \lambda)\bar{x} + \lambda y$$
, for some $0 < \lambda < 1$,

so

$$\bar{x} = \frac{1}{1-\lambda} (x - \lambda y).$$

To calculate λ , we consider

$$\|x-\bar{x}\| = \frac{\lambda}{1-\lambda} \|y-x\| \stackrel{!}{\leq} \varepsilon,$$

so for instance

$$\lambda := \frac{1}{2} \frac{\varepsilon}{\|y - x\| + \varepsilon}$$

does the job. But then *x* is a convex combination of $\bar{x} \in \overline{C}$ and $y \in \text{int } C$ and thus, by (a), $x \in \text{int } C$.