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Exercise 1 (Robinson’s CQ for particular problems). Let x̄ ∈ F = G−1[K] be given with
G : X → Z F-differentiable, where

G =

(
G1
G2

)
: X → Z1 × Z2 and K = K1 × K2 (Ki ⊆ Zi, i = 1, 2),

(a) Show that if G′(x̄) is surjective, then (ACQ) is satisfied, i.e., surjectivity is a con-
straint qualification.

(b) Let G′1(x̄) ∈ L(X; Z1) be surjective.

(i) Show that (RCQ) for x̄ is equivalent to

0 ∈ int
(

G2(x̄) + G′2(x̄)
(
G′1(x̄)−1[K1 − G1(x̄)

])
− K2

)
. (1)

(ii) Assume additionally that int K2 6= ∅. Show that then (RCQ) for x̄ is equiva-
lent to the existence of h ∈ X such that

G1(x̄) + G′1(x̄)h ∈ K1,
G2(x̄) + G′2(x̄)h ∈ int K2.

(2)

(c) Assume that K1 = {0Z1}.

(i) Let the constraint G2(x) ∈ K2 be void, so non-existent or trivial. Show
that then (RCQ) is satisfied in x̄ if and only if G′1(x̄) is surjective, and that
T(F , x̄) = ker G′1(x̄) in this case.
Remark: This statement is also known as Ljusternik’s theorem.

(ii) Let int K2 6= ∅. Show that x̄ satisfies (RCQ) if and only if G′1(x̄) ∈ L(X; Z1)
is surjective and there exists h ∈ ker G′1(x̄) such that

G2(x̄) + G′2(x̄)h ∈ int K2,

and that in this case

T(F , x̄) = ker G′1(x̄) ∩ T
(
G−1

2 [K2], x̄
)
= ker G′1(x̄) ∩ T`(G2, K2, x̄).

(iii) Give another proof of the equivalence of (RCQ) and the (MFCQ) for classical
NLPs.
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Solution. For convenience, we write down (RCQ) for x̄ ∈ F = G−1[K] again:

0 ∈ int
(
G(x̄) + G′(x̄)X− K

)
= int

((
G1(x̄)
G2(x̄)

)
+

(
G′1(x̄)X
G′2(x̄)X

)
−
(

K1
K2

))
(RCQ)

(a) If G′(x̄) is surjective, then 0 ∈ int G′(x̄)X = Z. On the other hand, Z = Z +
G(x̄)− K and thus

0 ∈ int
(
G(x̄) + G′(x̄)X− K

)
,

so (RCQ) in x̄ is satisfied. Since (RCQ) implies (ACQ), this shows the assertion.

(b) (i) (RCQ) =⇒ (1): Let (RCQ) for x̄ be satisfied. Then there exists ε > 0 such
that for all z = (z1

z2
) ∈ Z1 × Z2 with ‖zi‖Zi < ε there is h ∈ X such that

zi ∈ Gi(x̄) + G′i(x̄)h− Ki.

For i = 1, this means that h ∈ G′1(x̄)−1[G1(x̄)− K1− z1
]
. Re-inserting shows

that

z2 ∈ G2(x̄)+G′2(x̄)h−K2 ⊆ G2(x̄)+G′2(x̄)
(

G′1(x̄)−1[G1(x̄)−K1− z1
])
−K2.

Now choosing z1 = 0 and z2 ∈ Bε,Z2(0) arbitrarily yields

Bε,Z2(0) ⊆ G2(x̄) + G′2(x̄)
(

G′1(x̄)−1[G1(x̄)− K1
])
− K2,

which is exactly (1). We have not used surjectivity of G′1(x̄) for this implica-
tion.

For the reverse implication (1) =⇒ (RCQ), let

0 ∈ int
(

G2(x̄) + G′2(x̄)
(

G′1(x̄)−1[G1(x̄)− K1
])
− K2

)
. (1)

Consider z = (z1
z2
) ∈ Z. We need to show that there exists h ∈ X such that

zi ∈ Gi(x̄) + G′i(x̄)h− Ki

for ‖zi‖Zi sufficiently small. Due to G′1(x̄) being surjective, there exists h1 ∈
X such that G′1(x̄)h1 = z1 for every z1 ∈ Z1. Hence, we can restrict ourselves
to searching h2 ∈ X such that

G′1(x̄)h2 ∈ K1 − G1(x̄) ⇐⇒ h2 ∈ G′1(x̄)−1[K1 − G1(x̄)
]

and
z2 − G′2(x̄)h1 ∈ G2(x̄) + G′2(x̄)h2 − K2

because then h = h1 + h2 is the searched-for element of X.

Assumption (1) indeed means exactly that there exists such an h2 ∈ X, pro-
vided that the norm ‖z2 − G′2(x̄)h1‖Z2 is sufficiently small, say smaller than
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ε > 0. Now, z2 is not a problem because we are free to choose its norm as
small as needed, for instance ‖z2‖Z2 ≤ ε

4 . For ‖G′2(x̄)h1‖Z2 , we argue why
we can achieve

‖h1‖X ≤
ε

4

∥∥G′2(x̄)
∥∥−1
L(X;Z2)

such that, by continuity of G′2(x̄), we have∥∥G′2(x̄)h1
∥∥

Z2
≤
∥∥G′2(x̄)

∥∥
L(X;Z2)

‖h1‖X ≤
ε

4
.

The open mapping theorem tells us that 0 ∈ int G′1(x̄)Br,X(0) for any r > 0,
so for every r > 0 there exists δ = δ(r) such that Bδ(r),Z(0) ⊂ G′1(x̄)Br,X(0).
Read upside down, this means that every z1 of norm smaller than δ(r) can
be expressed by z1 = G′1(x̄)h1 with ‖h1‖X < r. Now choosing

r =
ε

4

∥∥G′2(x̄)
∥∥−1
L(X;Z2)

yields ∥∥z2 − G′2(x̄)h1
∥∥

Z2
≤ ‖z2‖Z2 +

∥∥G′2(x̄)h1
∥∥

Z2
≤ ε

2
and thus

z2 − G′2(x̄)h1 ∈ G2(x̄) + G′2(x̄)h2 − K2.

(ii) The proof works exactly as the one of Lemma 3.17 from the lecture notes
(equivalence of LSCQ and RCQ). Let int K2 6= ∅. We first show (2) =⇒
(RCQ), so let (2) be satisfied. Then there exists ε > 0 such that

G(x̄) + G′(x̄)h +

(
0

Bε,Z2(0)

)
⊆ K,

hence (
0

Bε,Z2(0)

)
⊆ G(x̄) + G′(x̄)h− K ⊆ G(x̄) + G′(x̄)X− K,

which implies (RCQ).

Next we show (RCQ) =⇒ (2). Assume that (2) does not hold, which means
that the convex sets G2(x̄) + G′2(x̄))

(
G′1(x̄)−1[K1 − G1(x̄)

])
and int K2 have

empty intersection and we can separate them with a hyperplane [z′ = α] to
obtain〈

z′, G2(x̄) + G′2(x̄)h− v
〉

Z∗,Z ≥ 0 for all h ∈ G′1(x̄)−1[K1 − G1(x̄)
]
, v ∈ K2.

Choosing z ∈ Z with 〈z′, z〉Z∗,Z < 0 and observing 〈z′, tz〉Z∗,Z < 0 for all t > 0
gives a contradiction to (RCQ) in the equivalent form (1), since we can choose
t small enough such that tv ∈ Bε(0) for given ε, but from 〈z′, tz〉Z∗,Z < 0 we
know that

tv /∈ G2(x̄) + G′2(x̄)
(
G′1(x̄)−1[K1 − G1(x̄)

])
− K2.
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(c) (i) For K1 = {0} and the second set of constraints void, (RCQ) is just (recall
G1(x̄) ∈ K1 = {0})

0 ∈ int
(
G′1(x̄)X

)
. (RCQ0)

If G′1(x̄) is surjective, then G′1(x̄)X = Z1 and (RCQ0) is trivially satisfied. Let
conversely (RCQ0) be true and let z ∈ Z1. Choosing ε > 0 sufficiently small,
there exists h ∈ X such that

εz = G′1(x̄)h.

But then
z = G′1(x̄)ε−1h,

hence z lies in the range of G′1(x̄). Since z ∈ Z1 was arbitrary, G′1(x̄) is surjec-
tive.

Since we now know that (RCQ) and thus the ACQ holds true, we have

T(F , x̄) = T`(G1, {0}, x̄) =
{

d ∈ X : G′1(x̄)d ∈ cone
(
{0}, G1(x̄)

)}
.

But cone({0}, G1(x̄)) = {0}, hence the foregoing sets are exactly ker G′1(x̄).

(ii) This is yet again exactly the same argument as in Lemma 3.17 in the lecture
notes or in (ii). The representation for T(F , x̄) follows as in the foregoing
exercise.

(iii) For a classical NLP, we identify as usual X = Rn, Z = Z1 × Z2 = Rp ×Rm,
G1 = h : Rn → Rp and G2 = g : Rn → Rm as well as K1 = {0}p as well
as K2 = (−∞, 0]m, where also clearly int K2 = (−∞, 0) 6= ∅. Then the
constraints are given exactly by h(x) = 0 and g(x) ≤ 0. The foregoing exer-
cise shows that (RCQ) for x̄ satisfying h(x̄) = 0 and g(x̄) ≤ 0 is equivalent
∇h(x̄)T being surjective and the existence of d ∈ Rn such that

∇h(x̄)Td = 0 and g(x̄) +∇g(x̄)Td < 0.

The latter translates to gi(x̄) +∇gi(x̄)Td < 0 for all i = 1, . . . , m. For gi(x̄) =
0, i.e., for i ∈ A(x̄), this is true if and only if ∇gi(x̄)Td < 0, which shows
already the MFCQ. Conversely, assuming MFCQ, we can achieve gi(x̄) +
∇gi(x̄)Td < 0 for i /∈ A(x̄), where it could happen that ∇gi(x̄)Td > 0, by
scaling d appropriately as in Example 3.16 in the lecture notes.

Exercise 2 (Polar cone). Let ∅ 6= C ⊆ X be a given set and consider its polar cone

C◦ :=
{

x′ ∈ X∗ : 〈x′, x〉X∗,X ≤ 0 for all x ∈ C
}

.

(a) Show that C◦ is a nonempty closed convex cone.

(b) Show that C◦ = C◦.
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(c) Now assume that C is convex. Show that C◦ = cone(C)◦.

Solution.

(a) The polar cone C◦ is nonempty because clearly 0 ∈ C◦. It is also closed as the
(infinite) intersection of the closed convex sets

C◦ =
⋂

x∈C

f−1
x
[
(−∞, 0]

]
, where fx ∈ X∗∗ : fx(x′) := 〈x′, x〉.

Here, the sets f−1
x
[
(−∞, 0]

]
are closed because they are the preimage of the closed

set (−∞, 0] under the continuous function fx, and they are convex because fx is a
linear mapping.

(b) Let x′ ∈ C◦ be given. Then x′ ∈ C◦ follows from C ⊆ C. Conversely, let x′ ∈ C◦

and x ∈ C. Then there exists a sequence (xk) ⊆ C such that xk → x and〈
x′, x

〉
X∗,X = lim

k→∞

〈
x′, xk

〉
X∗,X ≤ 0

due to continuity of x′. Hence, x′ ∈ C◦.

(c) Let x′ ∈ cone(C)◦. Then x′ ∈ C◦ follows from C ⊆ cone(C). Conversely, let
x′ ∈ C◦ and y ∈ cone(C). Then there exist λ > 0 and x ∈ C such that y = λx and
thus 〈

x′, y
〉

X∗,X = λ
〈

x′, x
〉

X∗,X ≤ 0.

Exercise 3 (Interior of an important cone). Let X be a function space over the set Ω ⊂ Rn

and consider the cone of nonpositive functions in X:

K− :=
{

f ∈ X : f (x) ≤ 0 for all x ∈ Ω
}

.

Determine whether K− has nonempty interior for the choices X = Lp(Ω) for 1 ≤ p ≤ ∞
and X = C(Ω).

Solution. Let f ∈ K−.

1. Let 1 ≤ p < ∞ as well as y ∈ Ω and ε > 0 be given. We show that there exists a
function g with ‖ f − g‖Lp(Ω) ≤ ε, but g /∈ K−. Let ρ be small enough such that if
‖x− y‖∞ < ρ, then x ∈ Ω, and set δ = min(ρ, ε

p
n ) as well as

g : Ω→ R, g(x) := f (x) + χBδ,∞(y)(x) =

{
f (x) + 1 if ‖x− y‖∞ < δ,
f (x) otherwise.

Then we have g ∈ Lp(Ω) and

‖ f − g‖p
Lp(Ω)

=
∫

Bδ,∞(y)
1 dx = δn ≤ εp

due to the choice of δ ≤ ε
p
n . This shows that K− has empty interior in Lp(Ω) for

1 ≤ p < ∞.
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2. Let ε > 0 be arbitrary and assume that f (x) < −ε for all (if X = C(Ω)) or almost
all (if X = L∞(Ω)) x ∈ Ω, respectively. Let g ∈ Bε,X( f ). Then it follows that

g(x) = g(x)− f (x)+ f (x) ≤ |g(x)− f (x)|+ f (x) < ε− ε = 0 for (almost) all x ∈ Ω,

hence g ∈ K−. This means that K− has nonempty interior in the spaces L∞(Ω) or
C(Ω).

Exercise 4 (Topological properties of convex sets). Let ∅ 6= C ⊆ X be a convex set. For
two points x, y ∈ X we set

[x, y) =
{
(1− λ)x + λy : λ ∈ [0, 1)

}
,

so the set of convex combinations between x and y not including y.

(a) Show that [x, y) ⊂ int C for x ∈ int C and y ∈ C. Infer that int C is convex.
Hint: It will be easier to first show the assertion for y ∈ C and then extend the
proof to y ∈ C.

(b) Show that int C = int C if int C is nonempty.
Hint: There are multiple ways to solve this. Find at least two proofs. One pos-
sibility: Assume the contrary and use the geometric version of the Hahn-Banach
theorem to construct a point z ∈ ∂C with an open neighborhood whose intersec-
tion with C is empty (which is a contradiction, why?).

Remark: If the set C is even convex-series closed (cs-closed)—that means: For any se-
quences (xk) ⊆ C and (λk) ≥ 0 with ∑∞

k=1 λk = 1 for which x = ∑∞
k=1 λkxk exists in X,

we have x ∈ C—, then in fact int C = int C. Such cs-closed sets are always trivially
convex, and open or closed convex sets are also cs-closed. How does this fit with the
assertion in (b)?

Solution.

(a) If int C = ∅, there is nothing to prove. Otherwise, let x ∈ int C and y ∈ C and
set z := (1− λ)x + λy for some 0 < λ < 1. We need to show that there exists
ε > 0 such that Bε(z) ⊆ C. So let ε > 0 be fixed for now, to be determined later,
and choose some v ∈ Bε(z). In order so show that v ∈ C, we try to express it as a
convex combination of elements of C.

Firstly assuming y ∈ C, we use y itself and some element x̄ from a neighborhood
of x. Let δx be such that Bδx(x) ⊂ X (this must exist because x ∈ int C). We make
the ansatz

v = (1− α)x̄ + αy ⇐⇒ x̄ =
1

1− α

(
v− αy

)
for some 0 < α < 1, also to be determined. In order to have x̄ ∈ Bδx(x), we
calculate ∥∥x− x̄

∥∥ =
1

1− α

∥∥(1− α)x− v + αy
∥∥
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and we have (1− α)x̄ + αy = z exactly if α := λ. So of course we set this and
obtain ∥∥x− x̄

∥∥ =
1

1− λ
‖z− v‖ < ε

1− λ
.

This shows that with ε := (1− λ)δx, we have x̄ ∈ C and thus v = (1− λ)x̄ + λy ∈
C. Since v ∈ Bε(z) was arbitrary, this shows Bε(z) ⊂ C and thus z ∈ int C.

Now assume that only y ∈ C. Since then possibly y /∈ C, we cannot use y itself as
an element to express z as a convex combination. However, if y /∈ C, then y ∈ ∂C
and thus Bδy(y) ∩ C 6= ∅ for every δy > 0 by the definition of a boundary point.
We thus choose ȳ ∈ Bδy(y) ∩ C and x̄ ∈ Bδx(x) with δx > 0 as above and set,
analogously to the first case above,

v = (1− λ)x̄ + λȳ ⇐⇒ x̄ =
1

1− λ

(
v− λȳ

)
.

We have already chosen the λ-convex combination as above. Now calculate again

∥∥x− x̄
∥∥ =

1
1− λ

∥∥(1− λ)x− v + λȳ
∥∥ =

1
1− λ

∥∥(1− λ)x + λy︸ ︷︷ ︸
=z

−v + λ(ȳ− y)
∥∥

≤ 1
1− λ

(∥∥z− v
∥∥+ λ

∥∥ȳ− y
∥∥).

Recall that ‖ȳ − y‖ < δy and that we are free to choose δy > 0 because of the
boundary point property for y. In particular, we are allowed to choose it depend-
ing on ‖z− v‖, which we do by setting

δy :=
1
λ

(
(1− λ)

δx

2
− ‖z− v‖

)
,

which makes ‖x− x̄‖ < δx. In order to have δy > 0, this requires ε to be chosen as
e.g. ε := (1− λ) δx

2 . Then we have altogether v = (1− λ)x̄ + λȳ with x̄, ȳ ∈ C and
thus v ∈ C. Since v ∈ Bε(z) was arbitrary, we have Bε(z) ⊂ C and thus z ∈ int C.

(b) It is clear that int C ⊆ int C, so we only have to prove the reverse inclusion.

a) First proof following the hint: Assume that there is a point x ∈ int C \ int C.
Since by the first part of the exercise int C is convex and obviously open as
well as nonempty by assumption, there exists a hyperplane [ f = α] separat-
ing int C and x, i.e.,

〈 f , x〉X∗,X ≥ α ≥ 〈 f , y〉X∗,X for all y ∈ C.

(The inequality is in fact true for all y ∈ C instead of only y ∈ int C due to
the non-strict separation.) Since x was assumed to be from int C, there exists
ε > 0 such that Bε(x) ⊆ C. We set D := Bε(x) ∩ [ f > α].
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Then D is nonempty: Assume that 〈 f , ȳ〉 ≤ α for all ȳ ∈ Bε(x), or equiv-
alently 〈 f , x + y〉 ≤ α = 〈 f , x〉 for all y ∈ Bε(0). Then 〈 f , y〉 ≤ 0, which
means that 〈 f ,−y〉 ≥ 0 and thus 〈 f , x− y〉 ≥ α for all y ∈ Bε(0). From this
it follows that 〈 f , x + y〉 = α and thus 〈 f , y〉 = 0 for all y ∈ Bε(0). This
finally implies f = 0 in X∗, which is a contradiction to the definition of a
hyperplane. Hence, D is nonempty.

Choose a point z ∈ D. Since D, as the intersection of two open sets, is open,
there exists δ > 0 such that Bδ(z) ⊆ D. Moreover, D ∩ C = ∅ by definition
of D. On the other hand, z ∈ Bε(x) ⊆ C, hence z ∈ C \ C ⊆ ∂C. But then
Bδ(z) is an open neighborhood of the boundary point z of C which has empty
intersection with C. Such a neighborhood cannot exist by the definition of a
boundary point.

b) A more direct proof, using (a): Let x ∈ int C. Since int C 6= ∅, there exists
y ∈ int C, and since x ∈ int C, there is ε > 0 such that Bε(x) ⊆ C. We express
x as a convex combination of x̄ ∈ Bε(x) and y with the ansatz

x = (1− λ)x̄ + λy, for some 0 < λ < 1,

so
x̄ =

1
1− λ

(
x− λy

)
.

To calculate λ, we consider

‖x− x̄‖ = λ

1− λ
‖y− x‖

!
< ε,

so for instance
λ :=

1
2

ε

‖y− x‖+ ε

does the job. But then x is a convex combination of x̄ ∈ C and y ∈ int C and
thus, by (a), x ∈ int C.
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