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Exercise 1 (Robinson’s CQ for particular problems). Let € F = G~ ![K] be given with
G: X — Z F-differentiable, where

G:(gl>Zx—>Z1XZZ and K:leKz (Kl‘gzi,i:Lz),
2

(a) Show that if G’ () is surjective, then (ACQ) is satisfied, i.e., surjectivity is a con-
straint qualification.

(b) Let G(X) € L(X;Z;) be surjective.
(i) Show that (RCQ) for ¥ is equivalent to

0 € int (Gz(x) +Gh(x) (G (2) " [Ky — Gi(%)]) — 1<2). (1)

(ii) Assume additionally that int K, # @. Show that then (RCQ) for ¥ is equiva-
lent to the existence of h € X such that

Gi1(%) + Gi(%)h € Ky,

Go(%) + Gy(x)h € int K. )

(c) Assume that K3 = {0z, }.

(i) Let the constraint Gy(x) € K be void, so non-existent or trivial. Show
that then (RCQ) is satisfied in % if and only if Gj(%) is surjective, and that
T(F, %) = ker G| (%) in this case.

Remark: This statement is also known as Ljusternik’s theorem.

(ii) Letint K, # @. Show that ¥ satisfies (RCQ) if and only if G| (%) € L(X;Z;)
is surjective and there exists /1 € ker G| (%) such that

GQ(J?) + Gé(f)h € int Kj,
and that in this case

T(F, %) = ker G{ (%) N T(G; '[Kz], %) = ker G} (%) N T;(Gy, Ko, X).

(iii) Give another proof of the equivalence of (RCQ) and the (MFCQ) for classical
NLPs.



Solution. For convenience, we write down (RCQ) for ¥ € F = G~ ![K] again:

0 € int (G(¥) + C'(£)X — K) — int ((g;g;) + @ ggi) - (ﬁ)) (RCQ)

(a) If G'(x) is surjective, then 0 € int G'(¥)X = Z. On the other hand, Z = Z +
G(%) — K and thus
0 € int (G(%) + G'(¥)X — K),

so (RCQ) in ¥ is satisfied. Since (RCQ) implies (ACQ), this shows the assertion.

(b) () (RCQ) = (1): Let (RCQ) for x be satisfied. Then there exists ¢ > 0 such
that forallz = (7)) € Z1 X Z with ||z;(|z; < e there is h € X such that

zZ; € Gi(f) + Gl/(f)h — K.

For i = 1, this means that h € G (%) ! [G1(X) — Ky — z1]. Re-inserting shows
that

2 € Go(%) + Gh(R)h — Ko € Ga(%) + G5(%) (G (1) [Gr (%) — Ka — 1] ) — K.
Now choosing z; = 0 and z; € B, z,(0) arbitrarily yields
Boz,(0) € Ga(x) + G3(%) (G (1) 1[G (1) — Ku] ) — Ko,

which is exactly (1). We have not used surjectivity of G| (%) for this implica-
tion.

For the reverse implication (1) = (RCQ), let
0 € int (Gz(f) + Gh(%) (c;(x)*l Gy (%) — Kl]) . Kz). (1)
Consider z = (7)) € Z. We need to show that there exists # € X such that
zi € Gi(%) + G/(x)h — K;

for ||z;|| z, sufficiently small. Due to G}(X) being surjective, there exists I €
X such that G} ()1 = z; for every z; € Z;. Hence, we can restrict ourselves
to searching h, € X such that

Gi(f)hz €Ky — Gl(f) <~ hz € Gi(f)_l [Kl — Gl(f)]

and
Zy — Gé(f)hl € Gz(f) + Gé(f)hz — K5
because then i = hy + hy is the searched-for element of X.

Assumption (1) indeed means exactly that there exists such an iy € X, pro-
vided that the norm ||z — G(%)h; ||z, is sufficiently small, say smaller than



(i)

e > 0. Now, z7 is not a problem because we are free to choose its norm as
. Fel / —_

small as needed, for instance ||zz|z, < §. For ||G5(%)h1]|z,, we argue why

we can achieve

thuX <7 HGZ f Hz (X;Z7)

such that, by continuity of G)(%), we have

- _ e
1G2(D) ], < HGé(x)HE(X;Zz)thHX ST

The open mapping theorem tells us that 0 € int G (%)B, x(0) for any r > 0,
so for every r > 0 there exists 6 = () such that By, 7(0) C G1(%)B;x(0).
Read upside down, this means that every z; of norm smaller than é(r) can
be expressed by z; = G} (%)h; with ||h;||x < r. Now choosing

HGZ f Hc (X;Z5)

yields
€

HZZ_GZ (X)h HZ 2

HZ S ||Zz||22 + HGZ JZ I’ll

and thus
22 — Gy(%)hy € Go(%) + Gy(%)hy — K.

The proof works exactly as the one of Lemma 3.17 from the lecture notes

(equivalence of LSCQ and RCQ). Let int K # @. We first show (2) —
(RCQ), so let (2) be satisfied. Then there exists € > 0 such that

G(f)+G’(f)h+( 0 )gK,

B¢z, (0)
hence
0 _ !/ = = ! (=
(Be,ZZ(O)) CGX)+G (x)h—KCG(x)+G(x)X—K,
which implies (RCQ).

Next we show (RCQ) = (2). Assume that (2) does not hold, which means
that the convex sets Gy(%) + G5(%)) (G} (%) ' [K1 — G1(%)]) and int K, have
empty intersection and we can separate them with a hyperplane [z’ = a] to
obtain

(z,Gao(%) + Gy(2)h —v),. , >0 forallh € Gi(x) ' [Ky — Gi(%)], v € Ka.

Choosing z € Z with (z/,z) 7« 7 < 0 and observing (z’,tz) 7+ 7 < Oforall t > 0
gives a contradiction to (RCQ) in the equivalent form (1), since we can choose
t small enough such that tv € B,(0) for given ¢, but from (z’,tz) 7« 7 < 0 we
know that

to & Ga(%) + G3(%) (G (%) ' [Ki — Gi(%)]) — Ka.



(¢) (@) For K3 = {0} and the second set of constraints void, (RCQ) is just (recall
Gi(x) € K1 = {0})
0 € int (G} (x)X). (RCQo)
If G| () is surjective, then G| (%)X = Z; and (RCQy) is trivially satisfied. Let
conversely (RCQp) be true and let z € Z;. Choosing ¢ > 0 sufficiently small,
there exists h € X such that

ez = Gj(%)h.
But then
z =G (x)e ',

hence z lies in the range of G/ (¥). Since z € Z; was arbitrary, G| (X) is surjec-
tive.

Since we now know that (RCQ) and thus the ACQ holds true, we have
T(F,%) = T,(Gy, {0}, %) = {d € X: G} (%)d € cone ({0}, Gl(f))}.

But cone({0}, G1(%)) = {0}, hence the foregoing sets are exactly ker G} ().

(ii) This is yet again exactly the same argument as in Lemma 3.17 in the lecture
notes or in (ii). The representation for T(F, %) follows as in the foregoing
exercise.

(iii) For a classical NLP, we identify as usual X = R", Z = Z; x Z; = R? x R",
Gi = h:R" - R and G, = ¢g: R" — R™ as well as K; = {0}” as well
as K, = (—o0,0]", where also clearly int Ky = (—c0,0) # @. Then the
constraints are given exactly by 1(x) = 0 and g(x) < 0. The foregoing exer-
cise shows that (RCQ) for x satisfying /(%) = 0 and g(%) < 0 is equivalent
Vh(x)T being surjective and the existence of d € R" such that

Vh(zx)Td=0 and g(x)+ Vg(®)'d <o0.

The latter translates to ¢;(¥) + Vgi(%)Td < Oforalli=1,...,m. For g;(x) =
0,ie., fori € A(%), this is true if and only if Vg;(%)"d < 0, which shows
already the MFCQ. Conversely, assuming MFCQ, we can achieve g;(%) +
Vgi(x)Td < 0 fori ¢ A(x), where it could happen that Vg;(¥)'d > 0, by
scaling d appropriately as in Example 3.16 in the lecture notes.

Exercise 2 (Polar cone). Let © # C C X be a given set and consider its polar cone
C°:={x" e X*: (', x)x: x < Oforallx € C}.

(a) Show that C° is a nonempty closed convex cone.

(b) Show that C_ = C°.



(©)

Now assume that C is convex. Show that C° = cone(C)°.

Solution.

(a)

(b)

(©)

The polar cone C° is nonempty because clearly 0 € C°. It is also closed as the
(infinite) intersection of the closed convex sets

c°=) fi'[(=e0,0]], where fy € X**: fi(x') == (¥, x).
xeC

Here, the sets f, ! [(—o0, 0]] are closed because they are the preimage of the closed
set (—oo, 0] under the continuous function fy, and they are convex because f is a
linear mapping.

Letx’ € ?o be given. Then x’ € C° follows from C C C. Conversely, let x’ € C°
and x € C. Then there exists a sequence (x;) C C such that x; — x and
/ . /
X, x = lim{x’, %)y, » <O
< >XX k_>oo< k>x X =
due to continuity of x". Hence, x’ € Cc’.

Let x' € cone(C)°. Then x’ € C° follows from C C cone(C). Conversely, let
x" € C°and y € cone(C). Then there exist A > 0 and x € C such that y = Ax and
thus

<x’,y>X*,X = /\<x,’x>x*,x <0.

Exercise 3 (Interior of an important cone). Let X be a function space over the set (3 C R"
and consider the cone of nonpositive functions in X:

K_:= {fEX:f(x) SOforalleQ}.

Determine whether K_ has nonempty interior for the choices X = LV (Q2) for1 < p < o0

and X = C(Q)).

Solution. Let f € K_.

1.

Letl < p <ocaswellasy € () and € > 0 be given. We show that there exists a
function g with ||f — g[[1r() < & but g & K_. Let p be small enough such that if

|x — y]lo < p, then x € O, and set § = min(p, &7 ) as well as

FE)+1 i x — gl < 5,
. Q — IR, = + e
# 8lx) =fx) XBé’m(y)(x) {f(x) otherwise.
Then we have g € LP(Q)) and
Hf_gH}ZP(Q) :/B ldx =9" <&

5,00 y)

due to the choice of § < ¢i. This shows that K_ has empty interior in L (Q}) for
1< p<oo.



2. Let e > 0 be arbitrary and assume that f(x) < —e¢ for all (if X = C(Q)) or almost
all (if X = L=(Q)) x € O, respectively. Let ¢ € Be x(f). Then it follows that

g(x) =g(x)—f(x)+ f(x) < |g(x)—f(x)|+ f(x) <e—e=0 for (almost)all x € O,

hence ¢ € K_. This means that K_ has nonempty interior in the spaces L*(Q}) or
c@).

Exercise 4 (Topological properties of convex sets). Let @ # C C X be a convex set. For
two points x,y € X we set

x,y)={(1-Mx+Ay: A€[0,1)},
so the set of convex combinations between x and y not including y.

(a) Show that [x,y) C int C for x € int C and y € C. Infer that int C is convex.

Hint: It will be easier to first show the assertion for y € C and then extend the
proof toy € C.

(b) Show thatint C = int C if int C is nonempty.
Hint: There are multiple ways to solve this. Find at least two proofs. One pos-
sibility: Assume the contrary and use the geometric version of the Hahn-Banach
theorem to construct a point z € dC with an open neighborhood whose intersec-
tion with C is empty (which is a contradiction, why?).

Remark: If the set C is even convex-series closed (cs-closed)—that means: For any se-
quences (xx) € Cand (Ag) > 0 with Y37 ; Ay = 1 for which x = Y7 ; Agxy exists in X,
we have x € C—, then in fact int C = int C. Such cs-closed sets are always trivially
convex, and open or closed convex sets are also cs-closed. How does this fit with the
assertion in (b)?

Solution.

(a) If int C = @, there is nothing to prove. Otherwise, let x € int C and y € C and
setz := (1 —A)x + Ay for some 0 < A < 1. We need to show that there exists
e > 0 such that B;(z) C C. So let ¢ > 0 be fixed for now, to be determined later,
and choose some v € B¢(z). In order so show that v € C, we try to express it as a
convex combination of elements of C.

Firstly assuming vy € C, we use y itself and some element X from a neighborhood
of x. Let 6, be such that Bs_(x) C X (this must exist because x € int C). We make

the ansatz ,
v=(1-)x+ay <— le_a(v—ay)
for some 0 < a < 1, also to be determined. In order to have ¥ € B; (x), we
calculate ,
=] = (1~ )x —o-+ay]



and we have (1 — )% + ay = z exactly if « := A. So of course we set this and
obtain

Lo < 5
1—A 1—A°

This shows that with e := (1 —A)d,, wehave ¥ € Cand thusv = (1 - A)¥+ Ay €
C. Since v € B¢(z) was arbitrary, this shows B,(z) C C and thus z € int C.

lx = [} =

Now assume that only y € C. Since then possibly y ¢ C, we cannot use y itself as
an element to express z as a convex combination. However, if y ¢ C, theny € 9C
and thus By, (y) N C # @ for every J, > 0 by the definition of a boundary point.
We thus choose 7 € B;,(y) N C and * € B, (x) with 6, > 0 as above and set,
analogously to the first case above,

1

v=1-NMF+A§ <+—= I= 1_A(U—A]7).

We have already chosen the A-convex combination as above. Now calculate again

_ 1 _ 1 _

1 | -
< 12 (==l +Allg 1)

Recall that ||7 — y|| < ¢, and that we are free to choose 6, > 0 because of the
boundary point property for y. In particular, we are allowed to choose it depend-
ing on ||z — v||, which we do by setting

b= 1 (A=1% ~lz=wl),

which makes ||x — %|| < dy. In order to have 4, > 0, this requires ¢ to be chosen as
e.g.e:= (1 —A)%. Then we have altogether v = (1 — A)% + A7 with %,7 € C and
thus v € C. Since v € B,(z) was arbitrary, we have B;(z) C C and thus z € int C.

(b) Itis clear thatint C C int C, so we only have to prove the reverse inclusion.

a) First proof following the hint: Assume that there is a point x € int C \ int C.
Since by the first part of the exercise int C is convex and obviously open as
well as nonempty by assumption, there exists a hyperplane [f = a] separat-
ing int C and x, i.e.,

(f,x)x~x >a>(f,y)xx forally e C.

(The inequality is in fact true for all y € C instead of only y € int C due to
the non-strict separation.) Since x was assumed to be from int C, there exists
¢ > 0 such that B;(x) C C. We set D := B(x) N [f > a].



b)

Then D is nonempty: Assume that (f,7) < « for all § € B¢(x), or equiv-
alently (f,x+y) < a = (f,x) for all y € B(0). Then (f,y) < 0, which
means that (f, —y) > 0 and thus (f,x —y) > a for all y € B,(0). From this
it follows that (f,x +y) = a and thus (f,y) = 0 for all y € B¢(0). This
finally implies f = 0 in X*, which is a contradiction to the definition of a
hyperplane. Hence, D is nonempty.

Choose a point z € D. Since D, as the intersection of two open sets, is open,
there exists & > 0 such that Bs(z) € D. Moreover, D N C = @ by definition
of D. On the other hand, z € B.(x) € C, hence z € C\ C C 9C. But then
B;(z) is an open neighborhood of the boundary point z of C which has empty
intersection with C. Such a neighborhood cannot exist by the definition of a
boundary point.

A more direct proof, using (a): Let x € int C. Since int C # @, there exists

y € int C, and since x € int C, there is ¢ > 0 such that B;(x) C C. We express
x as a convex combination of ¥ € Be(x) and y with the ansatz

x=(1-A)x+ Ay, forsome0 <A <1,

SO

1 B
x—l_/\(x Ay).

To calculate A, we consider
A !
-l = =y —xll < e

so for instance .
5

. —
2y — x| +e

does the job. But then x is a convex combination of ¥ € C and y € int C and
thus, by (a), x € int C.



