Exercise 1 (Robinson's CQ for particular problems). Let $\bar{x} \in \mathcal{F} = G^{-1}[K]$ be given with $G: X \to Z$ F-differentiable, where

$$G = \begin{pmatrix} G_1 \\ G_2 \end{pmatrix} : X \to Z_1 \times Z_2 \text{ and } K = K_1 \times K_2 \quad (K_i \subseteq Z_i, i = 1, 2),$$

- (a) Show that if $G'(\bar{x})$ is surjective, then (ACQ) is satisfied, i.e., surjectivity is a constraint qualification.
- (b) Let $G'_1(\bar{x}) \in \mathcal{L}(X; Z_1)$ be surjective.
 - (i) Show that (RCQ) for \bar{x} is equivalent to

$$0 \in \operatorname{int} \left(G_2(\bar{x}) + G_2'(\bar{x}) \left(G_1'(\bar{x})^{-1} \left[K_1 - G_1(\bar{x}) \right] \right) - K_2 \right).$$
(1)

(ii) Assume additionally that int $K_2 \neq \emptyset$. Show that then (RCQ) for \bar{x} is equivalent to the existence of $h \in X$ such that

$$G_{1}(\bar{x}) + G'_{1}(\bar{x})h \in K_{1},$$

$$G_{2}(\bar{x}) + G'_{2}(\bar{x})h \in \text{int } K_{2}.$$
(2)

- (c) Assume that $K_1 = \{0_{Z_1}\}$.
 - (i) Let the constraint $G_2(x) \in K_2$ be void, so non-existent or trivial. Show that then (RCQ) is satisfied in \bar{x} if and only if $G'_1(\bar{x})$ is surjective, and that $T(\mathcal{F}, \bar{x}) = \ker G'_1(\bar{x})$ in this case.

Remark: This statement is also known as Ljusternik's theorem.

(ii) Let int $K_2 \neq \emptyset$. Show that \bar{x} satisfies (RCQ) if and only if $G'_1(\bar{x}) \in \mathcal{L}(X; Z_1)$ is surjective and there exists $h \in \ker G'_1(\bar{x})$ such that

$$G_2(\bar{x}) + G'_2(\bar{x})h \in \text{int } K_2,$$

and that in this case

$$T(\mathcal{F}, \bar{x}) = \ker G_1'(\bar{x}) \cap T(G_2^{-1}[K_2], \bar{x}) = \ker G_1'(\bar{x}) \cap T_\ell(G_2, K_2, \bar{x}).$$

(iii) Give another proof of the equivalence of (RCQ) and the (MFCQ) for classical NLPs.

Exercise 2 (Polar cone). Let $\emptyset \neq C \subseteq X$ be a given set and consider its polar cone

$$C^{\circ} := \{ x' \in X^* \colon \langle x', x \rangle_{X^*, X} \le 0 \text{ for all } x \in C \}.$$

- (a) Show that C° is a nonempty closed convex cone.
- (b) Show that $\overline{C}^{\circ} = C^{\circ}$.
- (c) Now assume that *C* is convex. Show that $C^{\circ} = \operatorname{cone}(C)^{\circ}$.

Exercise 3 (Interior of an important cone). Let *X* be a function space over the set $\Omega \subset \mathbb{R}^n$ and consider the cone of nonpositive functions in *X*:

$$K_{-} := \Big\{ f \in X \colon f(x) \le 0 \text{ for all } x \in \Omega \Big\}.$$

Determine whether K_{-} has nonempty interior for the choices $X = L^{p}(\Omega)$ for $1 \le p \le \infty$ and $X = C(\overline{\Omega})$.

Exercise 4 (Topological properties of convex sets). Let $\emptyset \neq C \subseteq X$ be a convex set. For two points $x, y \in X$ we set

$$[x,y) = \{(1-\lambda)x + \lambda y \colon \lambda \in [0,1)\},\$$

so the set of convex combinations between *x* and *y* not including *y*.

- (a) Show that $[x, y) \subset$ int *C* for $x \in$ int *C* and $y \in \overline{C}$. Infer that int *C* is convex. **Hint**: It will be easier to first show the assertion for $y \in C$ and then extend the proof to $y \in \overline{C}$.
- (b) Show that int $C = \operatorname{int} \overline{C}$ if int *C* is nonempty.

Hint: There are multiple ways to solve this. Find at least two proofs. One possibility: Assume the contrary and use the geometric version of the Hahn-Banach theorem to construct a point $z \in \partial C$ with an open neighborhood whose intersection with *C* is empty (which is a contradiction, why?).

Remark: If the set *C* is even *convex-series* closed (*cs*-closed)—that means: For any sequences $(x_k) \subseteq C$ and $(\lambda_k) \ge 0$ with $\sum_{k=1}^{\infty} \lambda_k = 1$ for which $x = \sum_{k=1}^{\infty} \lambda_k x_k$ exists in *X*, we have $x \in C$ —, then in fact int $C = \text{int } \overline{C}$. Such *cs*-closed sets are always trivially convex, and open or closed convex sets are also *cs*-closed. How does this fit with the assertion in (b)?