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Exercise 1 (Differentiability in Banach spaces). Verify the assertions from Example 3.3
in the lecture notes and some more:

(a) Show that every bounded linear operator A ∈ L(X; Y) is F-differentiable and its
derivative in every point x ∈ X is given by A itself.

(b) Let a : X × X → R be a symmetric continuous bilinear form. Prove that the
quadratic form given by X 3 u 7→ 1

2 a(u, u) ∈ R is F-differentiable and its deriva-
tive in u ∈ X is given by h 7→ a(u, h). Apply this to the function u 7→ 1

2‖u‖2
X for a

Hilbert space X.
Hint: The bilinear form a is continuous if and only if there exists a number C ≥ 0
such that |a(u, v)| ≤ C‖u‖X‖v‖X for all u, v ∈ X.

(c) We consider the superposition operator Ψ induced by sin : R→ R.

(i) Show that Ψ is F-differentiable as a mapping from L∞(0, 1) into itself with the
derivative given by h 7→ cos(y)h for every y ∈ L∞(0, 1) (can you generalize
this assertion to other inducing functions?), . . .
Hint: Calculate pointwisely and use exact first-order Taylor approximation
in integrated form.

(ii) . . . but Ψ is not F-differentiable as a mapping from Lp(0, 1) into itself for any
1 ≤ p < ∞.
Hint: Determine the residual of the first-order approximation exactly for
suitably chosen step functions h. Choosing y ≡ 0 also helps to clear the fog.

(iii) Guess and prove the relation between p and q such that Ψ is F-differentiable
as a mapping from Lq(0, 1) to Lp(0, 1).
Hint: You may use without proof that a superposition operator mapping
Lq(0, 1) to Lp(0, 1) for 1 ≤ p, q < ∞ is always automatically continuous.

(d) Let Ω ⊂ Rn be an open and bounded set. Prove that the superposition operator
Ξ induced by the real function ϕ(t) := t3 is F-differentiable when considered as a
mapping from L6(Ω) to L2(Ω) and its derivative is given by L6(Ω) 3 h 7→ 3y2h ∈
L2(Ω).

Solution.

(a) The assertion follows immediately from A ∈ L(X; Y) and

A(x + h)− Ax− Ah = 0.
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(b) From the properties of a, we derive

a(u + h, u + h) = a(u, u) + 2a(u, h) + a(h, h),

which on the one hand suggests that h 7→ a(u, h) will be the derivative of the
quadratic form, and on the other hand shows that∥∥1

2
a(u + h, u + h)− 1

2
a(u, u)− a(u, h)

∥∥ =
1
2

∥∥a(h, h)
∥∥ ≤ C

2
‖h‖2,

so ∥∥1
2

a(u + h, u + h)− 1
2

a(u, u)− a(u, h)
∥∥ = o

(
‖h‖

)
.

Moreover, we have ∣∣a(u, h)
∣∣≤ C‖u‖‖h‖,

so h 7→ a(u, h) is a continuous linear operator from X to X, as required.

For the squared norm j : u 7→ 1
2‖u‖X on a Hilbert space X, we have a(u, v) :=

(u, v)X, the scalar product in X, so j(u) = 1
2 (u, u)X. With the assertion from the

general case, this yields

j′(u)h = (u, h)X or ∇j(u) = u.

(c) Let y, h ∈ L∞(0, 1). We use first order Taylor expansion with exact remainder in
integrated form and calculate for almost every x ∈ (0, 1)

Ψ(y + h)(x) = sin
(
y(x) + h(x)

)
= sin(y(x)) + cos(y(x))h(x)

+
∫ 1

0

[
cos
(
y(x) + sh(x)

)
− cos(y(x))

]
h(x)ds.

(i) From the preceding formula it follows that∥∥Ψ(y + h)−Ψ(y)− cos(y)h
∥∥

L∞(0,1) =
∥∥sin(y + h)− sin(y)− cos(y)h

∥∥
L∞(0,1)

= esssupx∈(0,1)

∣∣∣∣∫ 1

0

[
cos
(
y(x) + sh(x)

)
− cos(y(x))

]
h(x)ds

∣∣∣∣
≤ esssupx∈(0,1)

∣∣h(x)2∣∣ ·(∫ 1

0
s ds

)
=

1
2
‖h‖2

L∞(0,1) = O
(
‖h‖2

L∞(0,1)

)
= o

(
‖h‖L∞(0,1)

)
,

where we have used that cos is globally Lipschitz continuous with Lipschitz
constant 1. Since h 7→ cos(y)h clearly maps L∞(0, 1) to L∞(0, 1) in a continu-
ous and linear fashion, the claim for L∞(0, 1)-differentiability of Ψ follows.

Here we have essentially only used the Lipschitz continuity of cos, so of the
derivative of the function inducing the superposition operator Ψ. Indeed,
one can show that if the functions f and f ′ are Lipschitz continuous, then
the superposition operator induced by f is F-differentiable from L∞ to L∞.
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(ii) To show non-differentiability of Ψ as an operator from Lp(0, 1) to Lp(0, 1) for
1 ≤ p < ∞, we, as the hint suggests, take the zero function y ≡ 0 as well as
h ∈ Lp(0, 1) to obtain

sin
(
y(x) + h(x)

)
= sin(0) + cos(0)h(x)

+
∫ 1

0

[
cos
(
0 + sh(x)

)
− cos(0)

]
h(x)ds

:= h(x) + r(x).

Choosing

hε(x) :=

{
1 if 0 ≤ x ≤ ε,
0 if ε < x ≤ 1,

we can calculate rε explicitly: For 0 ≤ x ≤ ε, we have

rε(x) =
∫ 1

0

[
cos(s)− 1

]
ds =

[
sin(s)− s

]s=1
s=0 = sin(1)− 1 6= 0,

whereas rε(x) = 0 for for ε < x ≤ 1. For Ψ to be continuously differentiable
between Lp(0, 1), we would need ‖rε‖Lp(0,1) = o(‖hε‖Lp(0,1)) as ε→ 0, that is,

lim
ε→0

‖rε‖Lp(0,1)

‖hε‖Lp(0,1)
= 0.

But
‖rε‖Lp(0,1)

‖hε‖Lp(0,1)
=

ε
1
p
(
sin(1)− 1

)
ε

1
p

= sin(1)− 1 6= 0

for all ε > 0, which shows that F-differentiability for Ψ fails to hold here.

(iii) Observing the preceding argument for non-differentiability of Ψ between
Lp(0, 1) and itself for 1 ≤ p < ∞, one notes that

‖rε‖Lp(0,1)

‖hε‖Lq(0,1)
=

ε
1
p
(
sin(1)− 1

)
ε

1
q

= ε
1
p−

1
q
(
sin(1)− 1

)
−→ 0 as ε→ 0

if 1 ≤ p < q < ∞ (in fact, this is true also for q = ∞ with ε
1
∞ = 1). This

suggests that this relation between p and q could work for F-differentiability
from Lq(0, 1) to Lp(0, 1).

So, we go back to the exact Taylor expansion and obtain via Hölder’s in-
equality∥∥Ψ(y + h)−Ψ(y)− cos(y)h

∥∥p
Lp(0,1) =

∥∥sin(y + h)− sin(y)− cos(y)h
∥∥p

Lp(0,1)

=
∫ 1

0

∣∣∣∣∫ 1

0

[
cos
(
y(x) + sh(x)

)
− cos(y(x))

]
h(x)ds

∣∣∣∣p dx

≤ ‖h‖p
Lq(0,1) · ‖ψ‖

p
Lr(0,1)
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with r := pq
q−p and

ψ(x) :=
∫ 1

0

[
cos
(
y(x) + sh(x)

)
− cos(y(x))

]
ds.

To obtain F-differentiability for Ψ mapping Lq(0, 1) to Lp(0, 1), we need to
show that h→ 0 in Lq(0, 1) implies ψ→ 0 in Lr(0, 1).

Writing ‖ψ‖Lr(0,1) explicitly, we find

‖ψ‖Lr(0,1) =

(∫ 1

0

∣∣∣∣∫ 1

0

[
cos
(
y(x) + sh(x)

)
− cos(y(x))

]
ds
∣∣∣∣r dx

) 1
r

≤
(∫ 1

0

∫ 1

0

∣∣∣cos
(
y(x) + sh(x)

)
− cos(y(x))

∣∣∣r ds dx
) 1

r

=

(∫ 1

0

∥∥cos
(
y + sh

)
− cos(y)

∥∥r
Lr(0,1) ds

) 1
r

,

where we have used Hölder’s (or Jensen’s) inequality and Fubini’s theo-
rem. Now, since the superposition operator Φ induced by cos clearly maps
Lq(0, 1) to L∞(0, 1) and (0, 1) has finite measure, Φ maps Lq(0, 1) to Lr(0, 1)
and is thereby, thanks to the hint, automatically continuous. But this means
that for every ε > 0 there exists δ = δ(ε) > 0 such that ‖ cos(y + h) −
cos(y)‖Lr(0,1) < ε whenever ‖h‖Lq(0,1) < δ. We infer that

‖ψ‖Lr(0,1) < ε whenever ‖h‖Lq(0,1) < δ(ε),

or in other words, ψ → 0 in Lr(0, 1) whenever h → 0 in Lq(0, 1). From this,
F-differentiability of Ψ from Lq(0, 1) to Lp(0, 1) follows.

Here we have only used that cos, so the derivative of the function sin induc-
ing the superposition operator Ψ, maps Lq(0, 1) to Lr(0, 1) and this is indeed
a sufficient condition for the general case (together with a condition ensur-
ing that Ψ maps Lq(0, 1) to Lp(0, 1) in the first place, of course – but we have
learned to know such a condition already on the first exercise sheet).

(d) We have already seen in the lecture notes and the last exercise sheet that Ξ maps
L6(Ω) to L2(Ω) due to t3 = t

6
2 . Again by pointwise calculation, we have for every

y, h ∈ L6(Ω)

Ξ(y + h)(x) =
(
y(x) + h(x)

)3
= y(x)3 + 3y(x)2h(x) + 3y(x)h(x)2 + h(x)3

for almost every x ∈ Ω. This shows that∥∥Ξ(y + h)− Ξ(y)− 3y2h
∥∥

L2(Ω)
≤ 3

∥∥yh2∥∥
L2(Ω)

+
∥∥h3∥∥

L2(Ω)
.
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We use Hölder’s inequality with 1
3 + 2

3 = 1 for the first term and rewrite the
second one to an L6(Ω) norm, from which we obtain∥∥Ξ(y + h)− Ξ(y)− 3yh

∥∥
L2(Ω)

≤ 3‖y‖L6(Ω)‖h‖2
L6(Ω) + ‖h‖

3
L6(Ω)

= O
(
‖h‖2

L6(Ω)

)
= o

(
‖h‖L6(Ω)

)
.

Since the derivative h 7→ 3y2h clearly maps L6(Ω) to L2(Ω) in a linear and bounded
fashion (use again Hölder’s inequality with 2

3 +
1
3 = 1), this shows F-differentiability

of Ξ.

Exercise 2 (Closedness of the tangential cone). Let X be a Banach space and let x ∈
M ⊆ X. Show that the contingent cone T(M, x) is closed.

Solution. Let (dk) ⊆ T(M, x) be a convergent sequence with limit d ∈ X. We need to
show that d ∈ T(M, x). By definition, for every k there exist sequences (xk

j ) ⊆ M and
(ηk

j ) > 0 such that xk
j → x and ηk

j (xk
j − x) → dk, each as j → ∞. We use a diagonal

sequence to show that d ∈ T(M, x). Depending on k, there exist numbers j(k) such
that ∥∥xk

j(k) − x
∥∥ <

1
k

and
∥∥∥ηk

j(k)
(
xk

j(k) − x
)
− dk

∥∥∥ <
1
k

But then yk := xk
j(k) converges to x and with µk := ηk

j(k) we have∥∥µk
(
yk − x

)
− d
∥∥ ≤ ∥∥µk

(
yk − x

)
− dk∥∥+ ∥∥dk − d

∥∥ −→ 0 as k→ ∞,

hence (yk) ⊆ M and (µk) > 0 are the sequences for which d ∈ T(M, x) by definition.

Exercise 3 (Linearizing cone). Verify Remark 3.11 in the lecture notes, that is: The lin-
earizing cone for the NLP

min f (x) s.t. g(x) ≤ 0, h(x) = 0,

with f : Rn → R, g : Rn → Rm and h : Rn → Rp, is given by

T`(G, K, x) =
{

d ∈ Rn : ∇h(x)Td = 0, ∇gi(x)Td ≤ 0 for i ∈ A(x)
}

for a feasible point x.

Solution. As in the lecture notes, we identify X = Rn, Z = Rm × Rp = Rm+p,
G(x) = (g(x)

h(x)) and K = (−∞, 0]m × {0}p. The linearizing cone as in the lecture notes is
given by

T`(G, K, x) =
{

d ∈ Rn : G′(x)d ∈ cone(K, G(x))
}

,
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for which we rewrite

d ∈ T`(G, K, x) ⇐⇒
(
∇g(x)Td
∇h(x)Td

)
∈
{

λ

(
y− g(x)

0

)
: y ∈ (−∞, 0]m, λ > 0

}
.

Set
C :=

{
d ∈ Rn : ∇h(x)Td = 0, ∇gi(x)Td ≤ 0 for i ∈ A(x)

}
.

One immediately observes that a direction d ∈ Rn needs to satisfy∇h(x)Td = 0 to be in
either cone T`(G, K, x) or C. In this sense, we concentrate on the inequality constraints
in the following.

1. Let first d ∈ T`(G, K, x), that is, there is a sequence λk(yk − g(x)) ⊆ cone(K, G(x))
such that λk(yk − g(x))→ G′(x)d where λk > 0 and yk ≤ 0 for every k ∈N. This
means that for every i = 1, . . . , m we have

∇gi(x)Td = lim
k→∞

λk
(
yk

i − gi(x)
)

with λ > 0 and yk
i ≤ 0.

For i ∈ A(x), this implies that ∇gi(x)Td = limk→∞ λkyk
i ≤ 0, and thus d ∈ C as

required.

2. Now assume that d ∈ C, so ∇gi(x)Td ≤ 0 for i ∈ A(x). For i ∈ A(x), we can
choose the nonpositive yi = gi(x) + 1

λ∇gi(x)Td and any number λ > 0 to obtain
a representation

∇gi(x)Td = λ
(
yi − gi(x)

)
with λ > 0 and yi ≤ 0.

If i /∈ A(x), then we have gi(x) < 0. An analogous ansatz as in the previous case
(rearrange the previous equality) yields

gi(x) +
1
λ
∇gi(x)Td = yi

!
≤ 0

for some number λ > 0. This requires

λ ≥ −∇gi(x)Td
gi(x)

for all i /∈ A(x),

which we achieve by setting

λ := max
(

1,
{
−∇gi(x)Td

gi(x)
: i /∈ A(x)

})
.

With this choice of λ and yi := gi(x) + 1
λ∇gi(x)Td, we have

∇g(x)Td ∈
{

λ
(
y− g(x)

)
: y ∈ (−∞, 0]m, λ > 0

}
,

hence d ∈ T`(G, K, x), again without the closure.
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Exercise 4 (Optimal control problem in reduced form). Consider the basic optimal con-
trol problem

min
(y,u)∈Y×U

J(y, u) s.t. E(y, u) = 0

with Y, U and Z Banach spaces and J : Y ×U → R and E : Y ×U → Z (continuously)
F-differentiable. Assume that for every u ∈ U there exists a unique y = y(u) ∈ Y
such that E(y(u), u) = 0. Then we can reduce the above optimal control problem to the
unrestricted optimization problem

min
u∈U

j(u) := J(y(u), u). (ROCP)

In this exercise, we investigate the control-to-state operator U 3 u 7→ y(u) ∈ Y more in
depth. We additionally assume that E′y(y(u), u) = (∂yE)(y(u), u) ∈ L(Y; Z) is contin-
uously invertible for every u ∈ U, so the inverse operator exists and is also linear and
continuous.

(a) Use the implicit function theorem to show that y is (continuously) F-differentiable
and determine an explicit formula for y′(u) from E(y(u), u) = 0 for all u ∈ U.

(b) Give an expression for the sensitivity j′(u)h in direction h ∈ U using the derived
formula for y′(u).

(c) Show that we can represent the total derivative j′(u) by

j′(u) = y′(u)∗ J′y
(
y(u), u

)
+ J′u

(
y(u), u

)
= E′u

(
y(u), u

)∗p + J′u
(
y(u), u

)
,

where p = p(u) ∈ Z∗ is the adjoint state satisfying the adjoint equation

E′y
(
y(u), u

)∗p = −J′y
(
y(u), u

)
.

(d) Let lastly Y, U and Z be finite-dimensional. We imagine this to originate from
a discretization of the infinite-dimensional problem, so the underlying space di-
mensions nY, nu and nZ may be very high and taking inverse matrices is not an
option. Compare the effort needed to compute the total derivative j′(u) (or∇j(u)
for that matter) using the sensitivity approach and the adjoint approach, respec-
tively.

Solution.

(a) The implicit function theorem says, in the terminology of this exercise: If E is
continuously F-differentiable in a point (y, u) and the partial derivative E′y(y, u) ∈
L(Y; Z) is continuously invertible, then there exist neighborhoods Uy ⊂ Y of y
and Uu ⊂ U of u together with an implicit function

ϕ : Uy → Uu such that E
(

ϕ(u), u
)
= E(y, u) for all u ∈ Uu.

This implicit function ϕ is continuously F-differentiable.
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If indeed (y, u) is of the form (y(u), u), then we have E
(
y(u), u

)
= 0 and ϕ co-

incides exactly with the control-to-state operator u 7→ y(u) on Uu. In this case,
the implicit function theorem implies that the control-to-state operator is contin-
uously F-differentiable. Since we have assumed the assumptions for the implicit
function theorem to hold for every u ∈ U and every pair (y(u), u), we obtain
global continuous F-differentiablity of the control-to-state operator.

Since E(y(u), u) = 0 for all u ∈ U, we know that its derivative in any direction
will be zero, hence

E′y
(
y(u), u

)
y′(u)h + E′u

(
y(u), u

)
h = 0 for all h ∈ U

and
y′(u) = −E′y

(
y(u), u

)−1E′u
(
y(u), u

)
. (1)

(b) From the chain rule and the foregoing expression for y′(u) in 1, we obtain

j′(u)h = J′y
(
y(u), u

)
y′(u)h + J′u

(
y(u), u

)
h

= −J′y
(
y(u), u

)
E′y
(
y(u), u

)−1E′u
(
y(u), u

)
h + J′u

(
y(u), u

)
h

for every direction h ∈ U.

(c) Since J′y
(
y(u), u)

)
∈ Y∗ and y′(u) ∈ L(U; Y), we can rewrite

J′y
(
y(u), u

)
y′(u)h =

〈
J′y
(
y(u), u

)
, y′(u)h

〉
Y∗,Y =

〈
y′(u)∗ J′y

(
y(u), u

)
, h
〉

U∗,U ,

where y′(u)∗ ∈ L(Y∗; U∗) is the adjoint operator to y′(u) given by

y′(u)∗ = −E′u
(
y(u), u

)∗E′y(y(u), u
)−∗.

Setting

p := −E′y
(
y(u), u

)−∗ J′y
(
y(u), u

)
⇐⇒ E′y

(
y(u), u

)∗p = −J′y
(
y(u), u

)
,

we obtain

J′y
(
y(u), u

)
y′(u)h =

〈
y′(u)∗ J′y

(
y(u), u

)
, h
〉

U∗,U =
〈

E′u
(
y(u), u

)∗p, h
〉

U∗,U .

Re-inserting into the formula for j′(u)h from (b), this yields

j′(u)h =
〈

E′u
(
y(u), u

)∗p + J′u
(
y(u), u

)
, h
〉

U∗,U for all h ∈ U

and thus the searched-for formula.
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(d) Given h ∈ U, calculating j′(u)h via the sensitivity formula as in (b) requires to
solve the linear system of equations of size nZ × nY (recall that taking inverse
matrices is forbidden)

E′y
(
y(u), u

)
v(u; h) = −E′u

(
y(u), u

)
h

and then set
j′(u)h = J′y

(
y(u), u

)
v(u; h) + J′u

(
y(u), u

)
h.

This means that in order to fully determine the total derivative j′(u), or the gradi-
ent ∇j(u), we need to solve nU linear system of equations of size nZ × nY – once
for each basis vector ei of U to rebuild j′(u) from v(u, ei).

For the adjoint approach on the other hand, we only need to solve the linear sys-
tem of equations of size nY × nZ

E′y
(
y(u), u

)∗p = −J′y
(
y(u), u

)
once to then calculate j′(u) = E′u

(
y(u), u

)∗p + J′u
(
y(u), u

)
. This is an immense

practical advantage of the adjoint method.
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