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Exercise 1 (Differentiability in Banach spaces). Verify the assertions from Example 3.3
in the lecture notes and some more:

(a) Show that every bounded linear operator A ∈ L(X; Y) is F-differentiable and its
derivative in every point x ∈ X is given by A itself.

(b) Let a : X × X → R be a symmetric continuous bilinear form. Prove that the
quadratic form given by X 3 u 7→ 1

2 a(u, u) ∈ R is F-differentiable and its deriva-
tive in u ∈ X is given by h 7→ a(u, h). Apply this to the function u 7→ 1

2‖u‖2
X for a

Hilbert space X.
Hint: The bilinear form a is continuous if and only if there exists a number C ≥ 0
such that |a(u, v)| ≤ C‖u‖X‖v‖X for all u, v ∈ X.

(c) We consider the superposition operator Ψ induced by sin : R→ R.

(i) Show that Ψ is F-differentiable as a mapping from L∞(0, 1) into itself with the
derivative given by h 7→ cos(y)h for every y ∈ L∞(0, 1) (can you generalize
this assertion to other inducing functions?), . . .
Hint: Calculate pointwisely and use exact first-order Taylor approximation
in integrated form.

(ii) . . . but Ψ is not F-differentiable as a mapping from Lp(0, 1) into itself for any
1 ≤ p < ∞.
Hint: Determine the residual of the first-order approximation exactly for
suitably chosen step functions h. Choosing y ≡ 0 also helps to clear the fog.

(iii) Guess and prove the relation between p and q such that Ψ is F-differentiable
as a mapping from Lq(0, 1) to Lp(0, 1).
Hint: You may use without proof that a superposition operator mapping
Lq(0, 1) to Lp(0, 1) for 1 ≤ p, q < ∞ is always automatically continuous.

(d) Let Ω ⊂ Rn be an open and bounded set. Prove that the superposition operator
Ξ induced by the real function ϕ(t) := t3 is F-differentiable when considered as a
mapping from L6(Ω) to L2(Ω) and its derivative is given by L6(Ω) 3 h 7→ 3y2h ∈
L2(Ω).

Exercise 2 (Closedness of the tangential cone). Let X be a Banach space and let x ∈
M ⊆ X. Show that the contingent cone T(M, x) is closed.
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Exercise 3 (Linearizing cone). Verify Remark 3.11 in the lecture notes, that is: The lin-
earizing cone for the NLP

min f (x) s.t. g(x) ≤ 0, h(x) = 0,

with f : Rn → R, g : Rn → Rm and h : Rn → Rp, is given by

T`(G, K, x) =
{

d ∈ Rn : ∇h(x)Td = 0, ∇gi(x)Td ≤ 0 for i ∈ A(x)
}

for a feasible point x.

Exercise 4 (Optimal control problem in reduced form). Consider the basic optimal con-
trol problem

min
(y,u)∈Y×U

J(y, u) s.t. E(y, u) = 0

with Y, U and Z Banach spaces and J : Y ×U → R and E : Y ×U → Z (continuously)
F-differentiable. Assume that for every u ∈ U there exists a unique y = y(u) ∈ Y
such that E(y(u), u) = 0. Then we can reduce the above optimal control problem to the
unrestricted optimization problem

min
u∈U

j(u) := J(y(u), u). (ROCP)

In this exercise, we investigate the control-to-state operator U 3 u 7→ y(u) ∈ Y more in
depth. We additionally assume that E′y(y(u), u) = (∂yE)(y(u), u) ∈ L(Y; Z) is contin-
uously invertible for every u ∈ U, so the inverse operator exists and is also linear and
continuous.

(a) Use the implicit function theorem to show that y is (continuously) F-differentiable
and determine an explicit formula for y′(u) from E(y(u), u) = 0 for all u ∈ U.

(b) Give an expression for the sensitivity j′(u)h in direction h ∈ U using the derived
formula for y′(u).

(c) Show that we can represent the total derivative j′(u) by

j′(u) = y′(u)∗ J′y
(
y(u), u

)
+ J′u

(
y(u), u

)
= E′u

(
y(u), u

)∗p + J′u
(
y(u), u

)
,

where p = p(u) ∈ Z∗ is the adjoint state satisfying the adjoint equation

E′y
(
y(u), u

)∗p = −J′y
(
y(u), u

)
.

(d) Let lastly Y, U and Z be finite-dimensional. We imagine this to originate from
a discretization of the infinite-dimensional problem, so the underlying space di-
mensions nY, nu and nZ may be very high and taking inverse matrices is not an
option. Compare the effort needed to compute the total derivative j′(u) (or∇j(u)
for that matter) using the sensitivity approach and the adjoint approach, respec-
tively.
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