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Exercise 1 (Differentiability in Banach spaces). Verify the assertions from Example 3.3
in the lecture notes and some more:

(a)

(b)

(©)

Show that every bounded linear operator A € L£(X;Y) is F-differentiable and its
derivative in every point x € X is given by A itself.

Let a: X x X — R be a symmetric continuous bilinear form. Prove that the
quadratic form given by X > u — 3a(u,u) € R is F-differentiable and its deriva-
tive in u € X is given by h — a(u, h). Apply this to the function u + |u[/% fora
Hilbert space X.

Hint: The bilinear form a is continuous if and only if there exists a number C > 0
such that |a(u,v)| < Cljul|x||v|x forall u,v € X.

We consider the superposition operator ¥ induced by sin: R — RR.

(i) Show that ¥ is F-differentiable as a mapping from L*(0, 1) into itself with the
derivative given by  — cos(y)h for every y € L*(0,1) (can you generalize
this assertion to other inducing functions?), ...

Hint: Calculate pointwisely and use exact first-order Taylor approximation
in integrated form.

(ii) ...but V¥ is not F-differentiable as a mapping from L”(0,1) into itself for any
1<p <o
Hint: Determine the residual of the first-order approximation exactly for
suitably chosen step functions h. Choosing y = 0 also helps to clear the fog.

(iii) Guess and prove the relation between p and g such that ¥ is F-differentiable
as a mapping from L7(0,1) to L”(0,1).
Hint: You may use without proof that a superposition operator mapping
L7(0,1) to LP(0,1) for 1 < p,q < oo is always automatically continuous.

Let (3 C R" be an open and bounded set. Prove that the superposition operator
E induced by the real function ¢(t) := #3 is F-differentiable when considered as a
mapping from L®(Q) to L?(Q)) and its derivative is given by L®(Q) > h + 3y?h €
L2(Q).

Exercise 2 (Closedness of the tangential cone). Let X be a Banach space and let x €
M C X. Show that the contingent cone T (M, x) is closed.



Exercise 3 (Linearizing cone). Verify Remark 3.11 in the lecture notes, that is: The lin-
earizing cone for the NLP

min f(x) s.t. g(x) <0, h(x)=0,
with f: R" =+ R, g: R" — R" and h: R" — IR?, is given by
Ty(G, K, x) = {d €R": Vh(x)Td =0, Vgi(x)Td < 0fori ¢ .A(x)}
for a feasible point x.

Exercise 4 (Optimal control problem in reduced form). Consider the basic optimal con-
trol problem
i , t E(y,u)=0
(y/ur)nelyxu](y u) s (v, u)

with Y, U and Z Banach spacesand J: Y x U — Rand E: Y x U — Z (continuously)
F-differentiable. Assume that for every u € U there exists a unique y = y(u) € Y
such that E(y(u), u) = 0. Then we can reduce the above optimal control problem to the
unrestricted optimization problem

minj(u) :== J(y(u),u). (ROCP)

uel
In this exercise, we investigate the control-to-state operator U > u — y(u) € Y more in
depth. We additionally assume that E| (y(u),u) = (9yE)(y(u),u) € L(Y;Z) is contin-
uously invertible for every u € U, so the inverse operator exists and is also linear and
continuous.

(a) Use the implicit function theorem to show that y is (continuously) F-differentiable
and determine an explicit formula for y'(u) from E(y(u),u) = 0 forall u € U.

(b) Give an expression for the sensitivity j'(u)h in direction h € U using the derived
formula for y'(u).

(c) Show that we can represent the total derivative j'(u) by

') =y () Ty (), ) + T (y (), u) = By (y(u),u)"p + T (y(u), u),
where p = p(u) € Z* is the adjoint state satisfying the adjoint equation

By (y(u), ) 'p = ~J, (y(), ).

(d) Let lastly Y, U and Z be finite-dimensional. We imagine this to originate from
a discretization of the infinite-dimensional problem, so the underlying space di-
mensions ny, n, and nzy may be very high and taking inverse matrices is not an
option. Compare the effort needed to compute the total derivative j'(u) (or Vj(u)
for that matter) using the sensitivity approach and the adjoint approach, respec-
tively.



