Exercise 1 (Existence of globally optimal solutions). Determine whether the following optimization problems in function spaces admit a globally optimal solution.

$$\min_{u \in C([0,1])} \int_0^1 u(x)^2 \, \mathrm{d}x \quad \text{s.t.} \quad u(1) = 1, \tag{P1}$$

where C([0,1]) is the Banach space of all continuous functions $u: [0,1] \to \mathbb{R}$ equipped with the norm $||u||_{\infty} := \max_{x \in [0,1]} |u(x)|$,

$$\min_{u \in L^2(0,1)} - \int_0^1 x \, u(x)^2 \, \mathrm{d}x \quad \text{s.t.} \quad \|u\|_{L^2(0,1)} \le 1, \tag{P2}$$

and

$$\max_{y \in H^1(0,1)} \|y\|_{L^{\infty}(0,1)} \quad \text{s.t.} \quad \|y\|_{H^1(0,1)} \le 2,$$
(P3)

where $H^1(0,1)$ is the Sobolev (Hilbert) space $H^1(0,1) := \{y \in L^2(0,1) : y' \in L^2(0,1)\}$ equipped with the norm $\|y\|_{H^1(0,1)} := \|y\|_{L^2(0,1)} + \|y'\|_{L^2(0,1)}$.

Hint: The natural embedding $W^{1,2}(0,1) = H^1(0,1) \hookrightarrow C([0,1])$ induced by the identity mapping $u \mapsto u$ is a *compact* linear operator, see Exercise 4 below.

Solution. Problem (P1) does not admit a globally optimal solution. Denote the objective function on C([0,1]) by f and the feasible set by $\mathcal{F} := \{u \in C([0,1]) : u(1) = 1\}$. It is clear that 0 is a lower bound for f and the sequence $u_k(x) := x^k \in \mathcal{F}$ satisfies $f(u_k) = \frac{1}{2k+1} \to 0$ as k goes to infinity. Hence $\inf_{u \in \mathcal{F}} f(u) = 0$. But there is no function \bar{u} which satisfies $f(\bar{u}) = 0$, because for every function $u \in \mathcal{F}$, there exists $\delta > 0$ sufficiently small such that $u(x) \ge \frac{1}{2}$ for all $x \in [1 - \delta, 1]$ due to continuity of u und u(1) = 1. This implies that $f(u) \ge \frac{\delta}{4} > 0$ for every feasible $u \in \mathcal{F}$.

Problem (P2) also admits no globally optimal solution. Let again f be the objective function, this time on $L^2(0,1)$, and let $\mathcal{F} := \{u \in L^2(0,1) : ||u||_{L^2} \le 1\}$ be the feasible set. Due to $0 \le xu(x)^2 \le u(x)^2$ almost everywhere in (0,1), we have $f(u) \ge -||u||_{L^2(0,1)} \ge -1$ for every feasible function $u \in \mathcal{F}$. Moreover, -1 is indeed the infimum of f over \mathcal{F} , as the sequence $u_k(x) = \sqrt{k\chi_{(1-\frac{1}{k},1)}} \in \mathcal{F}$ demonstrates. Again, there is no feasible function attaining the minimum: The zero function is immediately discarded due to f(0) = 0, and for every nonzero $u \in \mathcal{F}$, we have $0 < xu(x)^2 < u(x)^2$ for all x from the non-null set $\{x : u(x) \neq 0\}$. But this means $f(u) > -||u||_{L^2(0,1)} \ge -1$ and the minimum cannot be attained. Finally, problem (P3) admits a globally optimal solution. The Hilbert space $H^1(0,1)$ is certainly reflexive and the feasible set \mathcal{F} is bounded, closed and convex, hence weakly compact in that space. Moreover, due to the continuity of the embedding $H^1(0,1) \hookrightarrow L^{\infty}(0,1)$, we know that there exists a number C > 0 such that $\|y\|_{L^{\infty}(0,1)} \leq C \|y\|_{H^1(0,1)}$ for every function $y \in H^1(0,1)$, such that the objective function $f(y) = \|y\|_{L^{\infty}(0,1)}$ is bounded by 2*C* over \mathcal{F} . Accordingly, there exists a maximizing sequence $(y_k) \subset \mathcal{F}$ such that $f(y_k) \to f^* = \inf_{y \in \mathcal{F}} f(y) \leq 2C < \infty$. Since \mathcal{F} was weakly compact in $H^1(0,1)$, there exists a weakly convergent subsequence (y_{k_ℓ}) with some limit $\bar{y} \in \mathcal{F}$. Applying Lemma 2.6 from the lecture notes to the compact embedding $H^1(0,1) \hookrightarrow$ $L^{\infty}(0,1)$ shows that (y_{k_ℓ}) converges in norm in $L^{\infty}(0,1)$. But this means by definition that $f(y_{k_\ell}) \to f(\bar{y})$ from which by uniqueness of limits it follows that $f(\bar{y}) = f^*$. Hence \bar{y} is the global solution of (P3).

Exercise 2 (Continuity of superposition operators in Lebesgue-spaces). Let $f : \mathbb{R} \to \mathbb{R}$ be a real function and let *X* be a function space consisting of real-valued functions defined on a bounded open set $\Omega \subseteq \mathbb{R}^n$. Then the *superposition* or *Nemytskii* operator *F* (on *X*) induced by *f* is given by the mapping $X \ni u \mapsto f \circ u$, i.e., $F(u)(x) \coloneqq f(u(x))$ as a function of $x \in \Omega$.

(a) Let $1 \le p, q < \infty$ and assume that *f* is continuous and satisfies

$$\left|f(t)\right| \le C\left(\left|t\right|^{\frac{p}{q}} + 1\right) \tag{1}$$

for some constant $C \ge 0$. Show that *F* is a sequentially continuous mapping from $L^{p}(\Omega)$ to $L^{q}(\Omega)$.

Hint: From the proof of the Riesz-Fischer theorem (completeness of L^p): Every L^p convergent sequence admits a subsequence which converges in a pointwise sense almost everywhere and which is uniformly bounded by an L^p function.

(b) Let $\Omega = (0, 1)$ and assume that *F* is weakly sequentially continuous from $L^p(\Omega)$ to $L^q(\Omega)$, i.e., if $u_k \rightarrow u$ in $L^p(\Omega)$, then $F(u_k) \rightarrow F(u)$ in $L^q(\Omega)$. Show that *f* must already be an *affine-linear* function.

Hint: Use Rademacher's functions from Exercise 3.

(c) Let $1 , let <math>\Omega$ be bounded with a Lipschitz boundary, and assume that f is Lipschitz-continuous (in particular, f satisfies (1) for q = p). Show that F is weakly sequentially continuous as a mapping from $W^{1,p}(\Omega)$ to itself. Discuss the difference to the previous case.

Hint: The properties of Ω imply the compactness of the embedding $W^{1,p}(\Omega) \hookrightarrow L^p(\Omega)$ (this is the Rellich-Kondrachov theorem).

Solution.

(a) Let $(u_k) \subset L^p(\Omega)$ be a convergent sequence with limit $u \in L^p(\Omega)$. From the growth bound on f as in (1), we know that $F(u_k) \in L^q(\Omega)$, and by the hint, there exists a subsequence (u_{k_ℓ}) such that $u_{k_\ell}(x) \to u(x)$ for almost every $x \in \Omega$. But then the dominated convergence theorem implies that $F(u_{k_\ell})$ converges to F(u) in $L^q(\Omega)$, and the assumptions of that theorem are satisfied since f is continuous, so $F(u_{k_\ell})$ also converges in a pointwise sense almost everywhere in Ω , and we obtain an $L^q(\Omega)$ -bound for the sequence $F(u_{k_\ell})$ again by (1).

Since we can replace the original sequence (u_k) by any of its subsequences and obtain the same conclusion, we find that indeed $F(u_k)$ in total converges to F(u) in $L^q(\Omega)$ by the *nitpicker lemma*: A sequence (a_k) converges to the limit *a* if and only if every subsequence of (a_k) admits a subsequence which converges to *a* (work this out!).

(b) We take the Rademacher function

$$u(x) \coloneqq \begin{cases} \alpha & \text{if } x \in (0, \frac{1}{2}), \\ \beta & \text{if } x \in (\frac{1}{2}, 1). \end{cases}$$

Then, as in Exercise 3, $u_k \rightarrow \frac{1}{2}(\alpha + \beta)$ with $u_k(x) := u(kx)$ for $x \in (0, 1)$. On the other hand, F(u) is again a Rademacher function and $(F(u))_k = F(u_k)$, hence also $F(u_k) \rightarrow \frac{1}{2}(F(\alpha) + F(\beta))$. But then the assumption on weak continuity of F implies that

$$F(\frac{1}{2}(\alpha+\beta)) = \frac{1}{2}(F(\alpha)+F(\beta)),$$

and this means exactly that *f* is an affine function, since the preceding argument works for any $\alpha, \beta \in \mathbb{R}$.

(c) We have already seen in the part (a) of this exercise that F maps $L^{p}(\Omega)$ into itself. Moreover, the Lipschitz property of f implies that $\nabla F(u) = f'(u) \nabla u \in L^{p}(\Omega)^{n}$ if $u \in W^{1,p}(\Omega)$, hence F indeed maps $W^{1,p}(\Omega)$ into itself.

Now let $u_k \rightarrow u$ in $W^{1,p}(\Omega)$. The hint implies that $u_k \rightarrow u$ in $L^p(\Omega)$ (Lemma 2.6 in the lecture notes) and thus $F(u_k) \rightarrow F(u)$ in $L^p(\Omega)$ by part (a) of this exercise. On the other hand, $\nabla F(u_k) = f'(u_k) \nabla u_k$ is also bounded in $L^p(\Omega)^n$ by boundedness of the weakly convergent sequence (u_k) in $W^{1,p}(\Omega)$, so $(F(u_k))$ is indeed a bounded sequence in $W^{1,p}(\Omega)$. But then reflexivity of $W^{1,p}(\Omega)$ implies that there exists a weakly convergent subsequence $F(u_{k_\ell}) \rightarrow v \in W^{1,p}(\Omega)$. Using the hint again, we find v = F(u), and again a subsequence-subsequence argument as in part (a) of this exercise shows that indeed the whole sequence $(F(u_k))$ converges weakly to F(u).

Exercise 3 (An interesting family of functions (Rademacher)). Let $1 and let <math>f \in L^p_{loc}(\mathbb{R})$, that is, $f \in L^p(K)$ for every compact set $K \in \mathbb{R}$. Assume that f(x + T) =

f(x) for almost every $x \in \mathbb{R}$, so f is T-periodic with T > 0. Set

$$\overline{f} \coloneqq T^{-1} \int_0^T f(x) \, \mathrm{d}x$$

and consider the sequence $(u_k) \subset L^p(0,1)$ defined by

$$u_k(x) \coloneqq f(kx), \quad x \in (0,1).$$

(a) Show that $u_k \rightarrow \overline{f}$ in $L^p(0,1)$.

Hint: It is sufficient to show the assertion for dual pairs with step functions in $L^{p'}(0,1)$ (why?).

- (b) Examine the following examples:
 - (i) $f(x) = \sin(x)$,
 - (ii) f is 1-periodic given by

$$f(x) \coloneqq \begin{cases} \alpha & \text{if } x \in (0, \frac{1}{2}), \\ \beta & \text{if } x \in (\frac{1}{2}, 1) \end{cases}$$

for
$$\alpha, \beta \in \mathbb{R}$$
. Such functions are called *Rademacher's functions*.

Solution.

(a) Following the hint, we only need to show that

$$\int_{a}^{b} f(kx) \, \mathrm{d}x \quad \longrightarrow \quad (b-a)\overline{f}$$

for all $a, b \in [0, 1]$, because this implies that $\langle u_k, \chi \rangle \to \langle \overline{f}, \chi \rangle$ for every step function χ and these are dense in $L^{p'}(0, 1)$, such that indeed $\langle u_k, g \rangle \to \langle \overline{f}, g \rangle$ for all $g \in L^{p'}(0, 1)$ follows. Integration by substitution shows that

$$\int_{a}^{b} f(kx) \, \mathrm{d}x = \frac{1}{k} \int_{ka}^{kb} f(x) \, \mathrm{d}x$$

Now we nest the interval (ka, kb) within multiples of (0, T)-intervals to make use of the periodicity. Therefore we choose integers $\ell(k)$ and m(k) such that

$$(\ell - 1)T \le ka \le \ell T$$
 and $mT \le kb \le (m + 1)T$

and split the preceding integral:

$$\int_{a}^{b} f(kx) \, \mathrm{d}x = \frac{1}{k} \left[\int_{ka}^{\ell T} f(x) \, \mathrm{d}x + \sum_{\ell \le i \le m-1} \int_{iT}^{(i+1)T} f(x) \, \mathrm{d}x + \int_{mT}^{kb} f(x) \, \mathrm{d}x \right]$$
$$= \frac{m-\ell}{k} \int_{0}^{T} f(x) \, \mathrm{d}x + \frac{1}{k} \left[\int_{ka}^{\ell T} f(x) \, \mathrm{d}x + \int_{mT}^{kb} f(x) \, \mathrm{d}x \right].$$

Firstly, the residual integrals vanish as $k \to \infty$ due to

$$\frac{1}{k} \left| \int_{ka}^{\ell T} f(x) \, \mathrm{d}x + \int_{mT}^{kb} f(x) \, \mathrm{d}x \right| \le \frac{1}{k} \|f\|_{L^1(0,T)}.$$

For the "main" part, we need to show that $\frac{m-\ell}{k} \rightarrow \frac{b-a}{T}$ as $k \rightarrow \infty$. From the construction of m = m(k) and $\ell = \ell(k)$, we find

$$\frac{m-\ell}{k} \le \frac{b-a}{T} \le \frac{m-\ell+2}{k} \quad \iff \quad 0 \le \frac{b-a}{T} - \frac{m-\ell}{k} \le \frac{2}{k} \quad \text{for every } k \in \mathbb{N},$$

and so indeed $\frac{m-\ell}{k} \to \frac{b-a}{T}$ as $k \to \infty$. Hence,

$$\int_{a}^{b} u_{k}(x) \, \mathrm{d}x = \int_{a}^{b} f(kx) \, \mathrm{d}x \quad \stackrel{k \to \infty}{\longrightarrow} \quad \frac{b-a}{T} \int_{0}^{T} f(x) \, \mathrm{d}x = (b-a)\overline{f}$$

as desired.

- (b) (i) Here we have that u_k(x) := sin(kx) converges weakly to zero in every L^p(0,1), since clearly sin ∈ L[∞](ℝ) and thus also sin ∈ L^p_{loc}(ℝ) for every 1
 - (ii) For the Rademacher functions we find that $u_k \rightharpoonup \frac{1}{2}(\alpha + \beta)$, where $u_k(x) \coloneqq f(kx)$, again for all $L^p(0, 1)$ spaces for $1 due to <math>f \in L^{\infty}(\mathbb{R})$.

Exercise 4 (A particularly important compact embedding (Sobolev)). In Exercise 2, we have already used compactness of the Sobolev embedding $W^{1,p}(\Omega) \hookrightarrow L^p(\Omega)$ for a bounded Lipschitz domain $\Omega \subset \mathbb{R}^n$. In fact, the Sobolev embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ is compact for such domains whenever $\frac{1}{n} + \frac{1}{q} > \frac{1}{p}$. For p > n, even more is true, which we establish exemplarily for n = 1 and $\Omega = (0, 1)$.

(a) Show that, for every $1 \le p \le \infty$, the space $W^{1,p}(0,1)$ is a subset of $L^{\infty}(0,1)$ and that the embedding $W^{1,p}(0,1) \hookrightarrow L^{\infty}(0,1)$ is continuous, so

$$||u||_{L^{\infty}(0,1)} \leq C ||u||_{W^{1,p}(0,1)} = C(||u||_{L^{p}(0,1)} + ||u'||_{L^{p}(0,1)})$$

for some constant C > 0 independent of u.

Hint: The smooth functions $C^{\infty}([0,1])$ on [0,1] are dense in $W^{1,p}(0,1)$.

(b) Refine the previous embedding by proving that for p > 1 we even have $W^{1,p}(0,1) \hookrightarrow C^{0,1-\frac{1}{p}}([0,1])$, where

$$C^{0,\alpha}([0,1]) \coloneqq \left\{ u \in C([0,1]) \colon \|u\|_{C^{0,\alpha}([0,1])} < \infty \right\}$$

with

$$\|u\|_{C^{0,\alpha}([0,1])} \coloneqq \|u\|_{C([0,1])} + \sup_{x \neq y \in [0,1]} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}$$

is the α -*Hölder* space for $0 < \alpha \leq 1$.

(c) Prove that every bounded sequence in C^{0,α}([0,1]) admits a uniformly convergent subsequence, or equivalently, that the embedding C^{0,α}([0,1]) → C([0,1]) is compact.

Hint: Recall the Arzelà-Ascoli theorem.

(d) Infer that for p > 1, the space $W^{1,p}(0,1)$ embeds *compactly* into every Hölder space $C^{0,\alpha}([0,1])$ for $0 < \alpha < 1 - \frac{1}{p}$ and into the space of uniformly continuous functions C([0,1]).

Solution.

(a) Let $u \in C^{\infty}([0,1])$. We use the mean value of integration to obtain a number $z \in [0,1]$ such that

$$u(z) = \int_0^1 u(x) \, \mathrm{d}x$$

But then we have for every $y \in [0, 1]$ using the fundamental theorem of calculus and Hölder's inequality:

$$\begin{aligned} |u(y)| &\leq |u(x) - u(z)| + |u(z)| \leq \int_0^1 |u'(x)| \, \mathrm{d}x + \int_0^1 |u(x)| \, \mathrm{d}x \\ &\leq \|u'\|_{L^p(0,1)} + \|u\|_{L^p(0,1)} = \|u\|_{W^{1,p}(0,1)} \end{aligned}$$

hence $||u||_{L^{\infty}(0,1)} \leq ||u||_{W^{1,p}(0,1)}$ for all $u \in C^{\infty}([0,1])$. Since $C^{\infty}([0,1])$ is dense in $W^{1,p}(0,1)$, the inequality extends to all of $W^{1,p}(0,1)$ by continuity.

(b) Again via the fundamental theorem of calculus, we find for every $u \in W^{1,p}(0,1)$

$$|u(y) - u(z)| \le \int_{z}^{y} |u'(x)| \, \mathrm{d}x \le |y - z|^{1 - \frac{1}{p}} ||u'||_{L^{p}(0,1)},$$

which shows that u is continuous and that

$$\sup_{y\neq z\in[0,1]}\frac{|u(y)-u(z)|}{|y-z|^{1-\frac{1}{p}}}\leq \|u'\|_{L^p(0,1)}.$$

Together with the embedding $W^{1,p}(0,1) \hookrightarrow L^{\infty}(0,1)$, this implies the assertion.

(c) We start with the hint: The Arzelà-Ascoli theorem says that a subset $\mathcal{F} \subset C([0,1])$ is relatively compact *if and only if* (!) it is bounded and uniformly equicontinuous, so there is a common modulus of continuity for all functions from \mathcal{F} . Rephrasing the latter in (ε, δ) -language, this means:

for every $\varepsilon > 0$ there exists $\delta > 0$:

$$(|x-y| < \delta \implies |u(x)-u(y)| < \varepsilon \text{ for all } u \in \mathcal{F}).$$

Note that δ may depend on ε , but not on x, y or u.

Now, choosing a bounded sequence $(u_k) \subset C^{0,\alpha}([0,1])$ as the set $\mathcal{F} \subset C([0,1])$, it is clear from the definition of the Hölder norm $\|\cdot\|_{C^{0,\alpha}([0,1])}$ that \mathcal{F} is bounded in C([0,1]). Moreover, again by boundedness in the Hölder norm, there is a number $C \ge 0$ such that

$$\sup_{x \neq y \in [0,1]} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le C \quad \text{for all } u \in \mathcal{F}.$$

But this implies exactly equicontinuity of functions in \mathcal{F} , with the choice $\delta := C^{-1}\sqrt[\alpha]{\varepsilon}$. Hence the Arzelà-Ascoli theorem implies that \mathcal{F} is relatively compact in C([0,1]) and this means exactly that (u_k) admits a subsequence which converges in C([0,1]), i.e., uniformly.

(d) We have seen that $W^{1,p}(0,1) \hookrightarrow C^{0,1-\frac{1}{p}}([0,1])$ and the latter embeds *compactly* into C([0,1]) by the foregoing part of the exercise.

For the assertion within the Hölder scale, we show more generally that in fact, $C^{0,\beta}([0,1])$ embeds compactly $C^{0,\alpha}([0,1])$ whenever $0 < \alpha < \beta$: Let (u_k) be a bounded sequence in $C^{0,\beta}([0,1])$. Then there exists a uniformly convergent subsequence (u_{k_ℓ}) . We show that (u_{k_ℓ}) even converges in $C^{0,\alpha}([0,1])$ by showing that it is a Cauchy sequence for the seminorm

$$[f]_{\alpha} := \sup_{x \neq y \in [0,1]} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}$$

as follows:

$$\begin{split} \left[u_{k_{\ell}} - u_{k_{m}} \right]_{\alpha} &\leq \left[u_{k_{\ell}} - u_{k_{m}} \right]_{\beta}^{\frac{\alpha}{\beta}} \cdot \left(2 \| u_{k_{\ell}} - u_{k_{m}} \|_{C([0,1])} \right)^{1 - \frac{\alpha}{\beta}} \\ &\leq (2M)^{\frac{\alpha}{\beta}} \left(2 \| u_{k_{\ell}} - u_{k_{m}} \|_{C([0,1])} \right)^{1 - \frac{\alpha}{\beta}}, \end{split}$$

where *M* is the bound on the sequence (u_k) in $C^{0,\beta}([0,1])$, and thus

$$\left[u_{k_{\ell}}-u_{k_{m}}\right]_{\alpha}\leq M^{\frac{\alpha}{\beta}}\left\|u_{k_{\ell}}-u_{k_{m}}\right\|_{C([0,1])}^{1-\frac{\alpha}{\beta}}.$$

Since $(u_{k_{\ell}})$ was a convergent sequence in C([0,1]) it is in particular a Cauchy sequence there, hence so it is in $C^{0,\alpha}([0,1])$. But this was the claim.