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Exercise 1 (Existence of globally optimal solutions). Determine whether the following
optimization problems in function spaces admit a globally optimal solution.

min
u∈C([0,1])

∫ 1

0
u(x)2 dx s.t. u(1) = 1, (P1)

where C([0, 1]) is the Banach space of all continuous functions u : [0, 1] → R equipped
with the norm ‖u‖∞ := maxx∈[0,1] |u(x)|,

min
u∈L2(0,1)

−
∫ 1

0
x u(x)2 dx s.t. ‖u‖L2(0,1) ≤ 1, (P2)

and

max
y∈H1(0,1)

‖y‖L∞(0,1) s.t. ‖y‖H1(0,1) ≤ 2, (P3)

where H1(0, 1) is the Sobolev (Hilbert) space H1(0, 1) := {y ∈ L2(0, 1) : y′ ∈ L2(0, 1)}
equipped with the norm ‖y‖H1(0,1) := ‖y‖L2(0,1) + ‖y′‖L2(0,1).

Hint: The natural embedding W1,2(0, 1) = H1(0, 1) ↪→ C([0, 1]) induced by the identity
mapping u 7→ u is a compact linear operator, see Exercise 4 below.

Solution. Problem (P1) does not admit a globally optimal solution. Denote the objec-
tive function on C([0, 1]) by f and the feasible set by F := {u ∈ C([0, 1]) : u(1) = 1}.
It is clear that 0 is a lower bound for f and the sequence uk(x) := xk ∈ F satisfies
f (uk) = 1

2k+1 → 0 as k goes to infinity. Hence infu∈F f (u) = 0. But there is no func-
tion ū which satisfies f (ū) = 0, because for every function u ∈ F , there exists δ > 0
sufficiently small such that u(x) ≥ 1

2 for all x ∈ [1− δ, 1] due to continuity of u und
u(1) = 1. This implies that f (u) ≥ δ

4 > 0 for every feasible u ∈ F .

Problem (P2) also admits no globally optimal solution. Let again f be the objective func-
tion, this time on L2(0, 1), and let F := {u ∈ L2(0, 1) : ‖u‖L2 ≤ 1} be the feasible set.
Due to 0 ≤ xu(x)2 ≤ u(x)2 almost everywhere in (0, 1), we have f (u) ≥ −‖u‖L2(0,1) ≥
−1 for every feasible function u ∈ F . Moreover, −1 is indeed the infimum of f over
F , as the sequence uk(x) =

√
kχ(1− 1

k ,1) ∈ F demonstrates. Again, there is no feasible
function attaining the minimum: The zero function is immediately discarded due to
f (0) = 0, and for every nonzero u ∈ F , we have 0 < xu(x)2 < u(x)2 for all x from the
non-null set {x : u(x) 6= 0}. But this means f (u) > −‖u‖L2(0,1) ≥ −1 and the minimum
cannot be attained.
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Finally, problem (P3) admits a globally optimal solution. The Hilbert space H1(0, 1) is
certainly reflexive and the feasible set F is bounded, closed and convex, hence weakly
compact in that space. Moreover, due to the continuity of the embedding H1(0, 1) ↪→
L∞(0, 1), we know that there exists a number C > 0 such that ‖y‖L∞(0,1) ≤ C‖y‖H1(0,1)

for every function y ∈ H1(0, 1), such that the objective function f (y) = ‖y‖L∞(0,1) is
bounded by 2C over F . Accordingly, there exists a maximizing sequence (yk) ⊂ F
such that f (yk) → f ∗ = infy∈F f (y) ≤ 2C < ∞. Since F was weakly compact in
H1(0, 1), there exists a weakly convergent subsequence (yk`) with some limit ȳ ∈ F .
Applying Lemma 2.6 from the lecture notes to the compact embedding H1(0, 1) ↪→
L∞(0, 1) shows that (yk`) converges in norm in L∞(0, 1). But this means by definition
that f (yk`)→ f (ȳ) from which by uniqueness of limits it follows that f (ȳ) = f ∗. Hence
ȳ is the global solution of (P3).

Exercise 2 (Continuity of superposition operators in Lebesgue-spaces). Let f : R → R

be a real function and let X be a function space consisting of real-valued functions
defined on a bounded open set Ω ⊆ Rn. Then the superposition or Nemytskii operator F
(on X) induced by f is given by the mapping X 3 u 7→ f ◦ u, i.e., F(u)(x) := f (u(x)) as
a function of x ∈ Ω.

(a) Let 1 ≤ p, q < ∞ and assume that f is continuous and satisfies∣∣ f (t)∣∣ ≤ C
(
|t|

p
q + 1

)
(1)

for some constant C ≥ 0. Show that F is a sequentially continuous mapping from
Lp(Ω) to Lq(Ω).

Hint: From the proof of the Riesz-Fischer theorem (completeness of Lp): Every Lp

convergent sequence admits a subsequence which converges in a pointwise sense
almost everywhere and which is uniformly bounded by an Lp function.

(b) Let Ω = (0, 1) and assume that F is weakly sequentially continuous from Lp(Ω)
to Lq(Ω), i.e., if uk ⇀ u in Lp(Ω), then F(uk) ⇀ F(u) in Lq(Ω). Show that f must
already be an affine-linear function.

Hint: Use Rademacher’s functions from Exercise 3.

(c) Let 1 < p < ∞, let Ω be bounded with a Lipschitz boundary, and assume that
f is Lipschitz-continuous (in particular, f satisfies (1) for q = p). Show that F is
weakly sequentially continuous as a mapping from W1,p(Ω) to itself. Discuss the
difference to the previous case.

Hint: The properties of Ω imply the compactness of the embedding W1,p(Ω) ↪→
Lp(Ω) (this is the Rellich-Kondrachov theorem).

Solution.
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(a) Let (uk) ⊂ Lp(Ω) be a convergent sequence with limit u ∈ Lp(Ω). From the
growth bound on f as in (1), we know that F(uk) ∈ Lq(Ω), and by the hint, there
exists a subsequence (uk`) such that uk`(x) → u(x) for almost every x ∈ Ω. But
then the dominated convergence theorem implies that F(uk`) converges to F(u)
in Lq(Ω), and the assumptions of that theorem are satisfied since f is continuous,
so F(uk`) also converges in a pointwise sense almost everywhere in Ω, and we
obtain an Lq(Ω)-bound for the sequence F(uk`) again by (1).

Since we can replace the original sequence (uk) by any of its subsequences and
obtain the same conclusion, we find that indeed F(uk) in total converges to F(u)
in Lq(Ω) by the nitpicker lemma: A sequence (ak) converges to the limit a if and
only if every subsequence of (ak) admits a subsequence which converges to a
(work this out!).

(b) We take the Rademacher function

u(x) :=

{
α if x ∈ (0, 1

2 ),
β if x ∈ ( 1

2 , 1).

Then, as in Exercise 3, uk ⇀ 1
2 (α + β) with uk(x) := u(kx) for x ∈ (0, 1). On

the other hand, F(u) is again a Rademacher function and (F(u))k = F(uk), hence
also F(uk) ⇀ 1

2 (F(α) + F(β)). But then the assumption on weak continuity of F
implies that

F
( 1

2 (α + β)
)
=

1
2
(

F(α) + F(β)
)
,

and this means exactly that f is an affine function, since the preceding argument
works for any α, β ∈ R.

(c) We have already seen in the part (a) of this exercise that F maps Lp(Ω) into itself.
Moreover, the Lipschitz property of f implies that∇F(u) = f ′(u)∇u ∈ Lp(Ω)n if
u ∈W1,p(Ω), hence F indeed maps W1,p(Ω) into itself.

Now let uk ⇀ u in W1,p(Ω). The hint implies that uk → u in Lp(Ω) (Lemma 2.6
in the lecture notes) and thus F(uk) → F(u) in Lp(Ω) by part (a) of this exercise.
On the other hand, ∇F(uk) = f ′(uk)∇uk is also bounded in Lp(Ω)n by bounded-
ness of the weakly convergent sequence (uk) in W1,p(Ω), so (F(uk)) is indeed a
bounded sequence in W1,p(Ω). But then reflexivity of W1,p(Ω) implies that there
exists a weakly convergent subsequence F(uk`) ⇀ v ∈ W1,p(Ω). Using the hint
again, we find v = F(u), and again a subsequence-subsequence argument as in
part (a) of this exercise shows that indeed the whole sequence (F(uk)) converges
weakly to F(u).

Exercise 3 (An interesting family of functions (Rademacher)). Let 1 < p < ∞ and let
f ∈ Lp

loc(R), that is, f ∈ Lp(K) for every compact set K b R. Assume that f (x + T) =
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f (x) for almost every x ∈ R, so f is T-periodic with T > 0. Set

f := T−1
∫ T

0
f (x) dx

and consider the sequence (uk) ⊂ Lp(0, 1) defined by

uk(x) := f (kx), x ∈ (0, 1).

(a) Show that uk ⇀ f in Lp(0, 1).

Hint: It is sufficient to show the assertion for dual pairs with step functions in
Lp′(0, 1) (why?).

(b) Examine the following examples:

(i) f (x) = sin(x),

(ii) f is 1-periodic given by

f (x) :=

{
α if x ∈ (0, 1

2 ),
β if x ∈ ( 1

2 , 1)

for α, β ∈ R. Such functions are called Rademacher’s functions.

Solution.

(a) Following the hint, we only need to show that∫ b

a
f (kx) dx −→ (b− a) f

for all a, b ∈ [0, 1], because this implies that 〈uk, χ〉 → 〈 f , χ〉 for every step func-
tion χ and these are dense in Lp′(0, 1), such that indeed 〈uk, g〉 → 〈 f , g〉 for all
g ∈ Lp′(0, 1) follows. Integration by substitution shows that∫ b

a
f (kx) dx =

1
k

∫ kb

ka
f (x) dx .

Now we nest the interval (ka, kb) within multiples of (0, T)-intervals to make use
of the periodicity. Therefore we choose integers `(k) and m(k) such that

(`− 1)T ≤ ka ≤ `T and mT ≤ kb ≤ (m + 1)T

and split the preceding integral:∫ b

a
f (kx) dx =

1
k

[∫ `T

ka
f (x) dx+ ∑

`≤i≤m−1

∫ (i+1)T

iT
f (x) dx+

∫ kb

mT
f (x) dx

]

=
m− `

k

∫ T

0
f (x) dx+

1
k

[∫ `T

ka
f (x) dx+

∫ kb

mT
f (x) dx

]
.
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Firstly, the residual integrals vanish as k→ ∞ due to

1
k

∣∣∣∣∫ `T

ka
f (x) dx+

∫ kb

mT
f (x). dx

∣∣∣∣ ≤ 1
k
‖ f ‖L1(0,T).

For the “main” part, we need to show that m−`
k → b−a

T as k → ∞. From the
construction of m = m(k) and ` = `(k), we find

m− `

k
≤ b− a

T
≤ m− `+ 2

k
⇐⇒ 0 ≤ b− a

T
− m− `

k
≤ 2

k
for every k ∈N,

and so indeed m−`
k →

b−a
T as k→ ∞. Hence,∫ b

a
uk(x) dx =

∫ b

a
f (kx) dx k→∞−→ b− a

T

∫ T

0
f (x) dx = (b− a) f

as desired.

(b) (i) Here we have that uk(x) := sin(kx) converges weakly to zero in every Lp(0, 1),
since clearly sin ∈ L∞(R) and thus also sin ∈ Lp

loc(R) for every 1 < p < ∞.
This is a particular example of a sequence whose pointwise limit is bogus
but which converges weakly, even to zero.

(ii) For the Rademacher functions we find that uk ⇀ 1
2 (α + β), where uk(x) :=

f (kx), again for all Lp(0, 1) spaces for 1 < p < ∞ due to f ∈ L∞(R).

Exercise 4 (A particularly important compact embedding (Sobolev)). In Exercise 2, we
have already used compactness of the Sobolev embedding W1,p(Ω) ↪→ Lp(Ω) for a
bounded Lipschitz domain Ω ⊂ Rn. In fact, the Sobolev embedding W1,p(Ω) ↪→ Lq(Ω)
is compact for such domains whenever 1

n + 1
q > 1

p . For p > n, even more is true, which
we establish exemplarily for n = 1 and Ω = (0, 1).

(a) Show that, for every 1 ≤ p ≤ ∞, the space W1,p(0, 1) is a subset of L∞(0, 1) and
that the embedding W1,p(0, 1) ↪→ L∞(0, 1) is continuous, so

‖u‖L∞(0,1) ≤ C‖u‖W1,p(0,1) = C
(
‖u‖Lp(0,1) + ‖u′‖Lp(0,1)

)
for some constant C > 0 independent of u.

Hint: The smooth functions C∞([0, 1]) on [0, 1] are dense in W1,p(0, 1).

(b) Refine the previous embedding by proving that for p > 1 we even have W1,p(0, 1) ↪→
C0,1− 1

p ([0, 1]), where

C0,α([0, 1]) :=
{

u ∈ C([0, 1]) : ‖u‖C0,α([0,1]) < ∞
}

with

‖u‖C0,α([0,1]) := ‖u‖C([0,1]) + sup
x 6=y∈[0,1]

|u(x)− u(y)|
|x− y|α

is the α-Hölder space for 0 < α ≤ 1 .
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(c) Prove that every bounded sequence in C0,α([0, 1]) admits a uniformly convergent
subsequence, or equivalently, that the embedding C0,α([0, 1]) ↪→ C([0, 1]) is com-
pact.

Hint: Recall the Arzelà-Ascoli theorem.

(d) Infer that for p > 1, the space W1,p(0, 1) embeds compactly into every Hölder
space C0,α([0, 1]) for 0 < α < 1− 1

p and into the space of uniformly continuous
functions C([0, 1]).

Solution.

(a) Let u ∈ C∞([0, 1]). We use the mean value of integration to obtain a number
z ∈ [0, 1] such that

u(z) =
∫ 1

0
u(x) dx .

But then we have for every y ∈ [0, 1] using the fundamental theorem of calculus
and Hölder’s inequality:

|u(y)| ≤ |u(x)− u(z)|+ |u(z)| ≤
∫ 1

0
|u′(x)| dx+

∫ 1

0
|u(x)| dx

≤ ‖u′‖Lp(0,1) + ‖u‖Lp(0,1) = ‖u‖W1,p(0,1),

hence ‖u‖L∞(0,1) ≤ ‖u‖W1,p(0,1) for all u ∈ C∞([0, 1]). Since C∞([0, 1]) is dense in
W1,p(0, 1), the inequality extends to all of W1,p(0, 1) by continuity.

(b) Again via the fundamental theorem of calculus, we find for every u ∈W1,p(0, 1)

|u(y)− u(z)| ≤
∫ y

z
|u′(x)| dx ≤ |y− z|1−

1
p ‖u′‖Lp(0,1),

which shows that u is continuous and that

sup
y 6=z∈[0,1]

|u(y)− u(z)|
|y− z|1−

1
p
≤ ‖u′‖Lp(0,1).

Together with the embedding W1,p(0, 1) ↪→ L∞(0, 1), this implies the assertion.

(c) We start with the hint: The Arzelà-Ascoli theorem says that a subset F ⊂ C([0, 1])
is relatively compact if and only if (!) it is bounded and uniformly equicontinuous,
so there is a common modulus of continuity for all functions from F . Rephrasing
the latter in (ε, δ)-language, this means:

for every ε > 0 there exists δ > 0 :(
|x− y| < δ =⇒ |u(x)− u(y)| < ε for all u ∈ F

)
.

Note that δ may depend on ε, but not on x, y or u.
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Now, choosing a bounded sequence (uk) ⊂ C0,α([0, 1]) as the set F ⊂ C([0, 1]), it
is clear from the definition of the Hölder norm ‖ · ‖C0,α([0,1]) that F is bounded in
C([0, 1]). Moreover, again by boundedness in the Hölder norm, there is a number
C ≥ 0 such that

sup
x 6=y∈[0,1]

|u(x)− u(y)|
|x− y|α ≤ C for all u ∈ F .

But this implies exactly equicontinuity of functions in F , with the choice δ :=
C−1 α
√

ε. Hence the Arzelà-Ascoli theorem implies that F is relatively compact in
C([0, 1]) and this means exactly that (uk) admits a subsequence which converges
in C([0, 1]), i.e., uniformly.

(d) We have seen that W1,p(0, 1) ↪→ C0,1− 1
p ([0, 1]) and the latter embeds compactly into

C([0, 1]) by the foregoing part of the exercise.

For the assertion within the Hölder scale, we show more generally that in fact,
C0,β([0, 1]) embeds compactly C0,α([0, 1]) whenever 0 < α < β: Let (uk) be a
bounded sequence in C0,β([0, 1]). Then there exists a uniformly convergent sub-
sequence (uk`). We show that (uk`) even converges in C0,α([0, 1]) by showing that
it is a Cauchy sequence for the seminorm

[ f ]α := sup
x 6=y∈[0,1]

| f (x)− f (y)|
|x− y|α

as follows: [
uk` − ukm

]
α
≤
[
uk` − ukm

] α
β

β ·
(

2
∥∥uk` − ukm

∥∥
C([0,1])

)1− α
β

≤ (2M)
α
β

(
2
∥∥uk` − ukm

∥∥
C([0,1])

)1− α
β
,

where M is the bound on the sequence (uk) in C0,β([0, 1]), and thus

[
uk` − ukm

]
α
≤ M

α
β
∥∥uk` − ukm

∥∥1− α
β

C([0,1]).

Since (uk`) was a convergent sequence in C([0, 1]) it is in particular a Cauchy
sequence there, hence so it is in C0,α([0, 1]). But this was the claim.
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