Exercise 1 (Existence of globally optimal solutions). Determine whether the following optimization problems in function spaces admit a globally optimal solution.

$$\min_{u \in C([0,1])} \int_0^1 u(x)^2 \, \mathrm{d}x \quad \text{s.t.} \quad u(1) = 1, \tag{P1}$$

where C([0,1]) is the Banach space of all continuous functions $u: [0,1] \to \mathbb{R}$ equipped with the norm $||u||_{\infty} := \max_{x \in [0,1]} |u(x)|$,

$$\min_{u \in L^2(0,1)} - \int_0^1 x \, u(x)^2 \, \mathrm{d}x \quad \text{s.t.} \quad \|u\|_{L^2(0,1)} \le 1, \tag{P2}$$

and

$$\max_{y \in H^1(0,1)} \|y\|_{L^{\infty}(0,1)} \quad \text{s.t.} \quad \|y\|_{H^1(0,1)} \le 2,$$
(P3)

where $H^1(0,1)$ is the Sobolev (Hilbert) space $H^1(0,1) := \{y \in L^2(0,1) : y' \in L^2(0,1)\}$ equipped with the norm $\|y\|_{H^1(0,1)} := \|y\|_{L^2(0,1)} + \|y'\|_{L^2(0,1)}$.

Hint: The natural embedding $W^{1,2}(0,1) = H^1(0,1) \hookrightarrow C([0,1])$ induced by the identity mapping $u \mapsto u$ is a *compact* linear operator, see Exercise 4 below.

Exercise 2 (Continuity of superposition operators in Lebesgue-spaces). Let $f : \mathbb{R} \to \mathbb{R}$ be a real function and let *X* be a function space consisting of real-valued functions defined on a bounded open set $\Omega \subseteq \mathbb{R}^n$. Then the *superposition* or *Nemytskii* operator *F* (on *X*) induced by *f* is given by the mapping $X \ni u \mapsto f \circ u$, i.e., $F(u)(x) \coloneqq f(u(x))$ as a function of $x \in \Omega$.

(a) Let $1 \le p, q < \infty$ and assume that *f* is continuous and satisfies

$$\left|f(t)\right| \le C\left(\left|t\right|^{\frac{\mu}{q}} + 1\right) \tag{1}$$

for some constant $C \ge 0$. Show that *F* is a sequentially continuous mapping from $L^{p}(\Omega)$ to $L^{q}(\Omega)$.

Hint: From the proof of the Riesz-Fischer theorem (completeness of L^p): Every L^p convergent sequence admits a subsequence which converges in a pointwise sense almost everywhere and which is uniformly bounded by an L^p function.

(b) Let $\Omega = (0, 1)$ and assume that *F* is weakly sequentially continuous from $L^{p}(\Omega)$ to $L^{q}(\Omega)$, i.e., if $u_{k} \rightarrow u$ in $L^{p}(\Omega)$, then $F(u_{k}) \rightarrow F(u)$ in $L^{q}(\Omega)$. Show that *f* must already be an *affine-linear* function.

Hint: Use Rademacher's functions from Exercise 3.

(c) Let $1 , let <math>\Omega$ be bounded with a Lipschitz boundary, and assume that f is Lipschitz-continuous (in particular, f satisfies (1) for q = p). Show that F is weakly sequentially continuous as a mapping from $W^{1,p}(\Omega)$ to itself. Discuss the difference to the previous case.

Hint: The properties of Ω imply the compactness of the embedding $W^{1,p}(\Omega) \hookrightarrow L^p(\Omega)$ (this is the Rellich-Kondrachov theorem).

Exercise 3 (An interesting family of functions (Rademacher)). Let $1 and let <math>f \in L^p_{loc}(\mathbb{R})$, that is, $f \in L^p(K)$ for every compact set $K \Subset \mathbb{R}$. Assume that f(x + T) = f(x) for almost every $x \in \mathbb{R}$, so f is T-periodic with T > 0. Set

$$\overline{f} \coloneqq T^{-1} \int_0^T f(x) \, \mathrm{d}x$$

and consider the sequence $(u_k) \subset L^p(0,1)$ defined by

$$u_k(x) \coloneqq f(kx), \quad x \in (0,1).$$

(a) Show that $u_k \rightharpoonup \overline{f}$ in $L^p(0,1)$.

Hint: It is sufficient to show the assertion for dual pairs with step functions in $L^{p'}(0,1)$ (why?).

- (b) Examine the following examples:
 - (i) $f(x) = \sin(x)$,
 - (ii) f is 1-periodic given by

$$f(x) := \begin{cases} \alpha & \text{if } x \in (0, \frac{1}{2}), \\ \beta & \text{if } x \in (\frac{1}{2}, 1) \end{cases}$$

for $\alpha, \beta \in \mathbb{R}$. Such functions are called *Rademacher's functions*.

Exercise 4 (A particularly important compact embedding (Sobolev)). In Exercise 2, we have already used compactness of the Sobolev embedding $W^{1,p}(\Omega) \hookrightarrow L^p(\Omega)$ for a bounded Lipschitz domain $\Omega \subset \mathbb{R}^n$. In fact, the Sobolev embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ is compact for such domains whenever $\frac{1}{n} + \frac{1}{q} > \frac{1}{p}$. For p > n, even more is true, which we establish exemplarily for n = 1 and $\Omega = (0, 1)$.

(a) Show that, for every $1 \le p \le \infty$, the space $W^{1,p}(0,1)$ is a subset of $L^{\infty}(0,1)$ and that the embedding $W^{1,p}(0,1) \hookrightarrow L^{\infty}(0,1)$ is continuous, so

$$\|u\|_{L^{\infty}(0,1)} \leq C \|u\|_{W^{1,p}(0,1)} = C(\|u\|_{L^{p}(0,1)} + \|u'\|_{L^{p}(0,1)})$$

for some constant C > 0 independent of u.

Hint: The smooth functions $C^{\infty}([0,1])$ on [0,1] are dense in $W^{1,p}(0,1)$.

(b) Refine the previous embedding by proving that for p > 1 we even have $W^{1,p}(0,1) \hookrightarrow C^{0,1-\frac{1}{p}}([0,1])$, where

$$C^{0,\alpha}([0,1]) \coloneqq \left\{ u \in C([0,1]) \colon \|u\|_{C^{0,\alpha}([0,1])} < \infty \right\}$$

with

$$\|u\|_{C^{0,\alpha}([0,1])} \coloneqq \|u\|_{C([0,1])} + \sup_{x \neq y \in [0,1]} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}$$

is the α -*Hölder* space for $0 < \alpha \leq 1$.

(c) Prove that every bounded sequence in $C^{0,\alpha}([0,1])$ admits a uniformly convergent subsequence, or equivalently, that the embedding $C^{0,\alpha}([0,1]) \hookrightarrow C([0,1])$ is compact.

Hint: Recall the Arzelà-Ascoli theorem.

(d) Infer that for p > 1, the space $W^{1,p}(0,1)$ embeds *compactly* into every Hölder space $C^{0,\alpha}([0,1])$ for $0 < \alpha < 1 - \frac{1}{p}$ and into the space of uniformly continuous functions C([0,1]).