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Preface

These lecture notes cover topics suitable for an introductory 5 ECTS (2+1 weekly
hours) primer on functional analytic methods in partial differential equations.

The goal of the course is to provide a solid foundation in the aspects and tools of func-
tional analysis used in modern abstract PDE analysis. Of course such a course cannot
comprehensively consider all aspects of either functional analysis or PDE applica-
tions within a 5 ECTS scope, so there will be shortcuts and several results without
proofs. The proofs will be part of the exercises or can be found easily in the literature
mentioned below.

The overarching idea is to establish essentially three fundamental ideas which are
prevalent in modern PDE theory basing on functional analysis; these being: posi-
tivity (ellipticity), Fredholm theory and diagonalization. The theoretical foundation
will therefor lead to bilinear forms, compactness, and spectral theory, particularly
in Hilbert spaces. Due to their important compactness properties, weak topologies
will also be considered. Sobolev spaces are then the natural environment to consider
elliptic boundary value problems in. Due to time constraints, time-dependent prob-
lems (evolution equations) will merely be mentioned; however, the topics taught will
transfer very well to this more advanced topic.

There are several very nice and comprehensive books about functional analysis meth-
ods in PDEs. The books I want to recommend most in relation to this lecture are the
ones by Bressan [Bre13] and Brezis [Bre10]; the reader will surely notice several simi-
larities in approaches. There are also two very concise and straight-to-the-point chap-
ters with many common topics in the book by Hackbusch [Hac17]. The classical books
by Alt [Alt16] (functional analysis side) and Evans [Eva98] (PDE side) may serve to
delve further into the respective topics.

These lecture notes are written during the summer term 2021 at FAU Erlangen-Nürn-
berg. There will certainly be mistakes and inconsistencies, and maybe I will want to
restructure some parts later on. In this sense, these notes are a work in progress.

I am grateful for any comments and suggestions and of course particularly so for any
notification of errors, by eMail at meinlschmidt[at]math.fau.de.
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1 Introduction

1 Introduction

1.1 Physical motivation

We begin with probably the most classical example of a physical process modeled by
a partial differential equation: the heat equation.

Suppose that we have an item at hand, made out of an isotropic heat-conducting
material (such as steel), and there is a certain source of energy around will influence
the temperature of the item. We want to understand the evolution of this temperature.
Ideally, we imagine the item to occupy a certain volume Ω ⊂ Rd in space (d ∈ N),
and we would like to have a value θ(t, x) ∈ R of the temperature at time t and in the
spatial point x ∈ Ω. (We imagine to start investigating the whole process at time 0).

To keep things simple, let us consider an external heat source modeled by a function
f : Ω → R. (Such a heat source could e.g. occur in so-called Joule heating.) Quantities
of interest are the internal heat energy normalized to volume Q(t, x) ∈ R, and, of
course, the temperature θ(t, x) ∈ R at every point t in time and x ∈ Ω. Clearly, life
tells us that there should be a particular relation between these two, and indeed,

∂tQ = cρ ∂tθ,

where c and ρ are constants defined by the material of the item; c is the specific heat
capacity, and ρ is the density of the material. The next ingredient is the famous Fourier
law1. It says that if q(t, x) is the (normalized, vector) flow of heat energy through a
surface, then

q = −κ∇θ,

where κ is the thermal conductivity coefficient of the material. (This may in general
be a matrix.) According to the first law of thermodynamics, its relation to the internal
heat energy Q is that the temporal evolution of Q—the aggregation of energy in a fixed
point x—will be exactly the amount of heat energy “left behind at x” by the flow q
plus the external energy source f , that is,

∂tQ = −div(q) + f .

Putting the foregoing relations together, we obtain the heat equation

cρ ∂tθ = ∂tQ = −div(q) + f = div(κ∇θ) + f . (1.1)

Of course, this is just a very basic derivation. We need to mention the initial temper-
ature distribution θ0 = θ(0, ·) : Ω → R at time t = 0, and also talk about how the
item interacts with its surroundings: is it insulated, is there maybe a heat source at
the boundary, or will there be radiative heat/energy loss to the exterior? The latter
question asks for boundary conditions, that is, a law for for θ(t, ·) on ∂Ω.

1Joseph Fourier (1768–1830)
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1 Introduction

The first classical boundary condition is an energy source (or sink) at the boundary, so
θ = g on ∂Ω, called Dirichlet2 boundary condition. The second one is heat flux over
the boundary, so ν · ∇θ = g on ∂Ω with the (unit) outer normal ν, called Neumann3

or natural boundary condition, with the particular case g = 0 corresponding to insu-
lation of the item. The subclass of natural boundary conditions where g = α(θext − θ)
for a modulation α is called Robin4 boundary condition, and we can interpret it as
an interaction of the temperature θ within Ω and the exterior temperature θext. There
might be more involved boundary conditions, e.g. in problems modeling radiation.

A time-dependent partial differential equation such as (1.1) is also called evolution
equation because it describes the evolution of the function t 7→ θ(t, ·) which is a func-
tion of functions. The natural setting to investigate such mappings is that of infinite-
dimensional (normed) vector spaces, so, in general, Banach spaces. (Because we like
completeness!) However, we will not go quite as deep into the subject to actually
consider evolution equations. We will content ourselves with the stationary variant
of (1.1):

− div(κ∇u) = f + boundary condition (1.2)

which we obtain from ∂tθ = 0 in (1.1). One may imagine that we have looked at the
heat evolution for a very long time and it has reached an equilibrium state. (To dis-
tance ourselves from the evolution equation, we call the quantity of interest u now.)
If κ is in fact a constant, then, for good measure, we also normalize κ = 1 and obtain
Poisson’s equation5

− ∆u = f + boundary condition (1.3)

with the Laplace operator6 ∆ := ∑d
i=1 ∂xi . The linear elliptic partial differential equa-

tion (1.2) is exactly the type of partial differential equation that we will ultimately deal
with in this lecture. The Poisson equation is the most simple problem in this class, but
still quite prototypical.

Clearly, there arise quite some questions of interest: given f of a particular quality,
does there exist a solution u to (1.2) or (1.3)? In which sense? Is it unique? And how
does the quality of f transfer to a solution u? We will attempt to answer at least some
of those. To this end, it is a good leitmotif to imagine such an elliptic linear PDE as
above as a linear equation

Lu = f (1.4)

in a vector space, in analogy to a system of linear equations for x ∈ Rn

Ax = b (1.5)

2Johann Peter Gustav Lejeune Dirichlet (1805–1859)
3Carl Gottfried Neumann (1832–1925)
4Victor Gustave Robin (1855–1897)
5Siméon Denis Poisson (1781–1840)
6Pierre-Simon, marquis de Laplace (1749–1827)
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1 Introduction

induced by a (quadratic) matrix Rn×n and a vector b ∈ Rn. Of course, as already
hinted at above, the obvious but nevertheless crucial difference here is that u and f
are functions on an infinite-dimensional set (a continuum in fact) and thus infinite-
dimensional objects between which L acts. This is the single reason why we require
so much foundations to consider even linear PDEs. Still, we can allow ourselves to
be inspired by the various techniques and beautiful theory of linear algebra. In fact,
it will turn out that one can transfer many ideas in an appropriate manners to the
infinite-dimensional system (1.4).

1.2 Linear algebra inspirations

Positivity

Suppose that A is positive definite, that is, there is γ > 0 such that

(Ax, x) ≥ γ|x|2 (x ∈ Rn),

where (·, ·) is the Euclidean inner product and | · | the associated norm. Then A is
invertible, A−1 is also positive definite, and (1.5) has a unique solution x = A−1b for
every b ∈ Rn.

We can rediscover this property in a very similar form for the infinite-dimensional
problem (1.4). Indeed, if there is a constant α > 0 such that

(L1/2u, L1/2u)H ≈ a(u, u) ≥ α∥u∥2
V (u ∈ V), (1.6)

then L is invertible and (1.4) has a unique solution u = L−1 f for every f ∈ V′.

There are some things to unpack here. First, First, V and H are Hilbert spaces with
V ↪→ H. Then, a is a bilinear form on the Hilbert space V and V′ is the dual space of
V. The operator L then acts V → V′. . We will give sense to all these notions through-
out this course, although we will not directly encounter the square root L1/2 of a
differential operator. For now it is enough to note that the positivity condition (1.6)
for L is formulated not for L directly but for a related object L1/2 in the form of
a bilinear form a. The idea behind this formulation involves two different infinite-
dimensional spaces whose norms are in general not equivalent. This is very much
related to infinite-dimensional spaces since on finite-dimensional spaces (with fixed
dimension), all norms are equivalent!

Fredholm alternative

In linear algebra, the unique solvability of (1.5) for every b ∈ Rn is equivalent to
unique (trivial) solvability of the homogeneous equation Ax = 0, that is, whether

Ax = 0 =⇒ x = 0.
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This is because the rank-nullity theorem implies that injectivity of (the mapping in-
duced by) A is equivalent to its surjectivity. Unfortunately, the rank-nullity theorem
is not true any more in infinite-dimensional spaces. That is, there are injective linear
mappings which are not surjective, and vice-versa.

However, there is a (surprisingly large) class of operators for which a similar theory
holds true; this is the class of so-called Fredholm operators7 of index 0. For these, we
also have the good property

L is injective ⇐⇒ L is surjective.

Hence, if L is a Fredholm operator of index 0, and

Lu = 0 =⇒ u = 0,

then (1.4) has a unique solution u for every f . A particularly useful case is when
L = I − K, where I is the identity operator and K is a compact operator. Of course,
for this to make sense we need to understand what a compact operator is! (The titular
Fredholm alternative says that either (1.4) is uniquely solvable for every f or Lu = 0
has a nonzero solution, which is a particular rephrasing of historical importance of
the foregoing explanations.)

Diagonalization

Last but not least, let A be symmetric. Then the eigenvalues λ1, . . . , λn of A are real.
Even (much) more, the spectral theorem says that there is an orthonormal basis
{v1, . . . , vn} of Rn given by eigenvectors of A. From expanding x and b with respect
to this orthonormal basis, we obtain for (1.5)

x =
n

∑
i=1

(x, vi)vi and
n

∑
i=1

λi(x, vi)vi = Ax = b =
n

∑
i=1

(b, vi)vi

Now, A is invertible if and only if all eigenvalues λi are nonzero, and in this case,
explicitly,

x =
n

∑
i=1

λ−1
i (b, vi)vi.

Interestingly, we are able to transfer nearly all of this theory to the infinite-dimensional
case (1.4), at least if L is a compact symmetric operator on a Hilbert space H. Then we
indeed obtain an orthonormal basis {ϕ1, ϕ2, . . . } of H—by definition, this basis cannot
be finite!—consisting of eigenvectors of L corresponding to eigenvalues λ1, λ2, . . . ,
which now have the property that λi → ∞ as i → ∞. Again, if λi ̸= 0 for all i ∈ N,
then

u =
∞

∑
i=1

λ−1
i ( f , ϕi)H ϕi

is the unique solution to (1.4) for given f .
7Erik Ivar Fredholm (1866–1927)
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2 Fundamentals

2.1 Normed vector spaces

In this section we collect several basic objects from the theory of normed vector
spaces. In the following, X is always a vector space over the field K of real numbers
R or complex numbers C. The very most fundamental idea is that we want to have a
notion of the size and the distance between elements x, y of X. This will be realized by
a norm.

A mapping ∥ · ∥ : X → R+
0 is called a norm, if

a) for every x ∈ X and λ ∈ K, we have ∥λx∥ = |λ|∥x∥ (positive homogeneity),

b) for every x, y ∈ X, we have ∥x + y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality), and

c) we have ∥x∥ = 0 if and only if x = 0 (definiteness).

If from ∥x∥ = 0 it does not follow that x = 0, then ∥ · ∥ is called seminorm.

The pair (X, ∥ · ∥) is called a normed vector space. If we mean a generic norm on X,
or if there is a “standard” norm on X, then we just refer to X instead of (X, ∥ · ∥) and
indicate the norm meant by ∥ · ∥X.

In a normed vector space, the norm ∥x∥X measures the size of the element x ∈ X.
Accordingly, we say that a set M ⊂ X is bounded if there exists C ≥ 0 such that
∥x∥ ≤ C for all x ∈ M.

Clearly, a size gives also rise to a notion of distance between points x, y ∈ X: the
distance should be exactly the size of the “connection” vector x − y ∈ X! Indeed,

d(x, y) := ∥x − y∥ (x, y ∈ X)

defines a metric on X. A normed vector space is thus also always a metric vector space.
In particular, it is a topological vector space and we can now talk about all sorts of
exciting topological notions in X. (But a norm does much more than just induce a
topology, as we will see soon.)

We begin with the basic notion of convergence. A sequence (xk) ⊆ X is said to con-
verge to x ∈ X, in short, xk → x or limk→∞ xk = x (in X), if

lim
k→∞

∥xk − x∥ = 0.

Then we can already say what we mean by continuity. Let U ⊆ X. A map f : U → Y
is said to be continuous at x ∈ U if

xk → x in X =⇒ f (xk) → f (x) in Y ((xk) ⊆ U).
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2 Fundamentals

As in elementary calculus, one shows that this is equivalent to the dreaded (ε, δ)-
formulation: The map f : U → Y is continuous at x ∈ U if for every ε > 0 there exists
δ > 0 such that

∥y − x∥X ≤ δ =⇒ ∥ f (y)− f (x)∥Y ≤ ε (y ∈ U)

We say that f : U → Y is continuous if it is continuous at every point in U. If the choice
of δ in dependence of ε can be done uniformly for every x ∈ U, then f is uniformly
continuous. It is Lipschitz continuous8 if there is a constant L f ≥ 0 such that

∥ f (x)− f (y)∥Y ≤ L f ∥x − y∥X (x, y ∈ U).

Note that the norm on a normed vector space is always (Lipschitz) continuous. This
can be seen by the reverse triangle inequality∣∣∥x∥ − ∥y∥

∣∣ ≤ ∥x − y∥ (x, y ∈ X).

In particular, from xk → x it always follows that ∥xk∥ → ∥x∥. (Clearly, the converse
is false in general.)

A particular brand of sequences are the following: A sequence (xk) ⊆ X is called a
Cauchy sequence9 if for every ε > 0, there is an index M ∈ N (large) such that

∥xk − xℓ∥ < ε (k, ℓ ≥ M).

It is easily seen that every convergent sequence is also a Cauchy sequence. But the
converse is not always true. In fact, this is a fundamental property: we say that X is
complete if every Cauchy sequence is also convergent. A complete normed vector
space is a Banach space10.

Now, let us turn to topological properties of sets. The (open) ball in X, centered at
x ∈ X, with radius r > 0, is denoted by

BX(x, r) :=
{

y ∈ X : ∥x − y∥ < r
}

.

If the space X is clear from the context, we skip the subscript X in BX(x, r). The trian-
gle inequality implies that (open) balls are convex: From y, z ∈ B(x, r) it follows that
(1 − λ)y + λz ∈ B(x, r) for every λ ∈ [0, 1].

We say that a set U ⊆ X is a neighborhood of x ∈ U if there exists r > 0 such that
B(x, r) ⊆ U. The set U ⊆ X is open if it is a neighborhood of every one of its elements
x ∈ U. Conversely, V ⊆ X is closed if its complement X \ V is open. (Recall the
saying, though: sets are not doors!—they can be neither open nor closed.) The closure
U of a set U ⊆ X is the smallest closed set containing U. We say that a set U ⊆ X is

8Rudolf Lipschitz (1832–1903)
9Louis Augustin Cauchy (1789–1857)

10Stefan Banach (1892–1945)
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2 Fundamentals

dense in X if U = X. A normed vector space is separable if there exists a countable
dense subset. Every subset of a separable space is again separable. The largest open
set contained in U is called the interior of U and denoted by int(U). It is given by the
union of all x ∈ U such that there exists r > 0 such that B(x, r) ⊆ U.

Particularly nice sets are those where sequences cannot go fully wild in the follow-
ing sense: A set U ⊆ X is compact if every sequence (xk) ⊆ U admits a convergent
subsequence (xkℓ) whose limit is again in U. If the closure U of a set U ⊂ X is com-
pact, then we say that U is relatively compact. In a Banach space X, an equivalent
notion is as follows: U ⊆ X is relatively compact if and only if it is totally bounded
(or precompact): for every ε > 0 there exists a finite number of point u1, u2, . . . , uN
such that

U ⊆
N⋃

k=1

B(uk, ε),

that is, U can be covered by a finite number of balls of radius ε centered at points in
U.

Some examples:

We use the opportunity to recall some examples of Banach spaces.

1) On the finite-dimensional space Kn, the p-norms, for 1 ≤ p ≤ ∞,

∥x∥p :=
( n

∑
i=1

|xi|p
)1/p

, ∥x∥∞ := max
1≤i≤n

|xi|

all give rise to separable Banach spaces. The dense subset is derived from Qn.

2) Let (Ω,A, µ) be a σ-finite measure space. For 1 ≤ p < ∞, set

∥ f ∥Lp(Ω,µ) :=
(∫

Ω
| f (x)|p dµ(x)

)1/p

and

∥ f ∥L∞(Ω,µ) := µ- ess sup
x∈Ω

| f (x)| := inf
{

M ≥ 0 : µ
(
{x ∈ Ω : | f (x)| > M}

)
= 0

}
.

Then, for 1 ≤ p ≤ ∞, we define the Lebesgue spaces11 Lp(Ω, µ) to consist
of all (equivalence classes w.r.t. equality µ-almost everywhere of) µ-measurable
functions f : Ω → K such that ∥ f ∥Lp(Ω,µ) < ∞. They are Banach spaces and
separable if 1 ≤ p < ∞ due to approximation by step functions.

These spaces are prototypical function spaces. In the (standard) case of µ being
the Lebesgue measure on Rn, we write only Lp(Ω).

11Henri Léon Lebesgue (1875–1941)
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2 Fundamentals

3) Another prototypical Banach space is the space of continuous functions C(E)
on a compact set E ⊂ Rn with the supremum norm

∥ f ∥∞ := ∥ f ∥C(E) := max
x∈E

| f (x)|.

It is also separable. However, the space of continuous functions with the L1-type
norm

∥ f ∥1 :=
∫

E
| f (x)|dx

is not a Banach space.

2.2 Linear operators

We fix a field K underlying the considered vector spaces. Let X, Y be normed vector
spaces.

A linear mapping A : X ⊆ dom(A) → Y from a subspace dom(A) ⊆ X of X to Y
is called a linear operator between X and Y with domain dom(A). We say that the
operator A is densely defined if dom(A) is dense in X. The range of A is given by

ran(A) :=
{

Ax : x ∈ dom(A)
}
⊆ Y,

and the kernel of A by

ker(A) := A−1[{0}
]

:=
{

x ∈ dom(A) : Ax = 0
}
⊆ X.

Of course, A is injective if and only if ker(A) = {0}.

Linear operators have a particularly nice characterization of continuity. Indeed, con-
sider the following notion: A mapping Λ : X → Y is said to be bounded if it maps
bounded sets in X into bounded sets in Y. Now, a linear operator between X and Y
with domain dom(A) = X, so A : X → Y, is bounded exactly when

∥A∥X→Y := sup
∥x∥X≤1

∥Ax∥Y < ∞. (2.1)

We note that in fact

sup
∥x∥X≤1

∥Ax∥Y = sup
∥x∥X=1

∥Ax∥Y = sup
x ̸=0

∥Ax∥Y

∥x∥X
(2.2)

if any of these quantities is finite. Moreover, in this case,

∥Ax∥Y ≤ ∥A∥X→Y∥x∥X (x ∈ X). (2.3)

It is thus both sufficient and necessary for A to be bounded that there exists a constant
C ≥ 0 such that

∥Ax∥Y ≤ C ∥x∥X (x ∈ X).

Now we can have our first theorem:

10



2 Fundamentals

Theorem 2.1. A linear operator X → Y is bounded if and only if it is continuous.

Proof. If A is bounded, then by (2.3),

∥Ax − Ay∥Y ≤ ∥A∥X→Y∥x − y∥X (x, y ∈ X),

and from y → x in X it follows that Ay → Ax in Y. (In fact, A is Lipschitz continuous!)

Conversely, let A be continuous. We consider x = 0. For ε = 1, there exists δ > 0 such
that, for all y ∈ X, from ∥y∥X ≤ δ it follows that ∥Ay∥Y ≤ ε = 1. Now let z ∈ X with
∥z∥X = 1 be arbitrary. Then y := δz satisfies ∥y∥X = δ, so

∥Az∥Y = δ−1∥Ay∥Y ≤ δ−1 (∥z∥X = 1).

Taking the supremum, it follows that A is bounded with ∥A∥X→Y ≤ δ−1.

Remark 2.2. Note that we have actually proven that if A is continuous at the ori-
gin, then A is bounded, and then A is already continuous everywhere.

It is then natural to consider the set L(X → Y) of all bounded linear operators A
mapping X to Y, so with dom(A) = X.

Theorem 2.3. The space of bounded linear operators L(X → Y) is a normed vector space
with the norm defined by (2.1) or (2.2). If Y is a Banach space, so is L(X → Y).

If X = Y, then we just write L(X) instead of L(X → X).

Note that if A ∈ L(X → Y) and B ∈ L(Y → Z), then BA ∈ L(X → Z) and

∥BA∥X→Z ≤ ∥A∥X→Y∥B∥Y→Z.

In particular, L(X) is an algebra. (It even has a unit, the identity mapping given by
Ax := x.)

Remark 2.4. A linear operator A : X ⊇ dom(A) → Y with domain dom(A) ̸=
X is often called unbounded in order to make a distinction to bounded linear
operators in L(X → Y). It is in principle possible for an unbounded operator to
be continuous, i.e., bounded, so this notion is not flawless. We will sometimes also
use this notion to point out when we do not assume continuity (and dom(A) = X)
for the operator(s) considered.

We next consider a concept closely related to completion for a linear operator A be-
tween X and Y. Often, we understand an operator well on a subspace X0 of X. We
can recover the operator on the whole X in the following situation.

11



2 Fundamentals

Proposition 2.5. Let X be a normed vector space and let Y be a Banach space. Let X0 be
a dense subspace of X and let A0 be a linear operator between X and Y with domain X0.
Suppose that

sup
x∈X0, ∥x∥X=1

∥A0x∥Y =: C0 < ∞. (2.4)

Then there exists a unique operator A ∈ L(X → Y) with ∥A∥X→Y = C0 as in (2.4) such
that Ax = A0x for all x ∈ X0. For x ∈ X \ X0 and (xk) ⊆ X0 with xk → x in X we
have Ax = limk→∞ A0xk.

Proof. Let x ∈ X \ X0 and consider a sequence X0 ∋ xk → x in X. We need to show
that Ax := limk→∞ A0xk exists and that it is well defined, so independent of the choice
of the sequence (xk) ⊆ X0. Since (xk) is convergent, (A0xk) is a Cauchy sequence:

∥A0xk − A0xℓ∥Y ≤ C0∥xk − xℓ∥X.

We have assumed Y to be a Banach space, so (A0xk) is convergent and there is some
y ∈ Y such that A0xk → y in Y. Now let (x̄k) ⊆ X0 be some other sequence converging
to x in X. By the analogous argument, there exists ȳ ∈ Y such that A0x̄k → ȳ in Y. But

∥y − ȳ∥Y = lim
k→∞

∥A0xk − A0x̄k∥X ≤ lim
k→∞

C0∥xk − x̄k∥X = 0,

so y = ȳ. Hence Ax := y is well defined. Finally, A is bounded with norm C0 because

C0 ≤ sup
0 ̸=x∈X

∥Ax∥Y

∥x∥X
= sup

0 ̸=x∈X
lim
k→∞

∥A0xk∥Y

∥xk∥X
≤ C0

for any sequence X0 ∋ xk → x in X, and then using (2.2).

Lastly, we mention a type of bounded linear operator which occurs often in the con-
text of functional analytic methods for PDEs. Given two Banach spaces X and Y, we
call a bounded linear injective operator A ∈ L(X → Y) an embedding. Usually, em-
beddings are considered in the context of X ⊆ Y and the identity mapping Ax = x.
Recall that the identity is continuous between X and Y if and only if there exists a
constant C ≥ 0 such that

∥x∥Y ≤ C ∥x∥X (x ∈ X).

If there exists an embedding between two Banach spaces X and Y, then we say that
X is embedded in Y and write X ↪→ Y. For example, L∞(0, 1) ↪→ Lp(0, 1) for all
1 ≤ p ≤ ∞ by the Hölder inequality.

12
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3 Dual space, linear functionals and weak topology

3.1 Dual space and linear functionals

A manifestation of L(X → Y) of particular interest is the case Y = K. We in fact give
this space its own notation: X′ := L(X → K), and we call it the dual space of X.
A linear mapping ϕ : X → R will be called (linear) functional. (An element ϕ ∈ X′

is thus a bounded linear functional.) Since K is either R or C which is each a Banach
space, X′ is always a Banach space, independent of X being a Banach space or not.
This is already a first indicator that X′ is an interesting object.

The most far reaching result about the dual space is the following (version of the)
Hahn-Banach extension theorem12. It says that we can extend a bounded linear func-
tional from a subspace V ⊆ X of X to the whole X with preservation of the norm.
However, the extension is not unique in general. This is to be compared with Proposi-
tion 2.5.

Theorem 3.1 (Hahn-Banach (extension)). Let X be a normed vector space and let V ⊆
X be a subspace. Let ϕ : (V, ∥ · ∥X) → K be a bounded linear functional. Then ϕ can be
extended to a bounded linear functional on X, i.e., there exists Φ : X → K such that

∥Φ∥X′ = sup
∥x∥X≤1

|Φ(x)| = sup
x∈V

∥x∥X≤1

|ϕ(x)|.

The theorem in itself may, at first glance, not seem very spectacular. But note that the
subspace V may be very small, for instance V := {λx0 : λ ∈ K} for some x0 ∈ X.
It is quite astonishing that it is possible to extend a bounded linear functional from
such a small subspace to the whole space. (Of couse, the price we pay is that we lose
uniqueness of the extension.) This particular one-dimensional subspace exapmple for
V already leads to useful corollaries which, in their essence, say that X′ is sufficiently
rich to include interesting objects. Let X be a normed vector space for the following
corollaries.

Corollary 3.2. For every x ∈ X, there exists a bounded linear functional ϕ ∈ X′ such
that ϕ(x) = ∥x∥X and ∥ϕ∥X′ = 1.

Proof. Let x ∈ X be fixed and consider V := {λx : λ ∈ K}. Define ϕ(λx) := λ∥x∥ and
use Theorem 3.1.

12Hans Hahn (1879–1934)
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3 Dual space, linear functionals and weak topology

Corollary 3.3. For every pair x, y ∈ X with x ̸= y, there exists a bounded linear func-
tional ϕ ∈ X′ such that ϕ(x) ̸= ϕ(y).

Proof. Use Corollary 3.2 to obtain a functional ϕ ∈ X′ such that

ϕ(x)− ϕ(y) = ϕ(x − y) = ∥x − y∥ ̸= 0.

Corollary 3.4. Let x ∈ X. Then

∥x∥X = sup
ϕ∈X′

∥ϕ∥X′≤1

|ϕ(x)| = max
ϕ∈X′

∥ϕ∥X′≤1

|ϕ(x)|.

Proof. Clearly,
sup
ϕ∈X′

∥ϕ∥X′≤1

|ϕ(x)| ≤ sup
ϕ∈X′

∥ϕ∥X′≤1

∥ϕ∥X′∥x∥X ≤ ∥x∥X.

It remains to show that there is ϕ ∈ X′ with ∥ϕ∥ ≤ 1 such that |ϕ(x)| = ∥x∥. But this
is exactly the statement of Corollary 3.2.

It is imperative to compare the assertion of Corollary 3.4—which is a nontrivial re-
sult—with the definition, recall (2.1),

∥ϕ∥X′ = sup
∥x∥X≤1

|ϕ(x)|.

We lastly mention a particular geometric form of the Hahn-Banach theorem. It is
about the separation of convex sets. We use the notion of a hyperplane [ϕ = α] given
by [

ϕ = α
]
=

{
x ∈ X : Re ϕ(x) = α

}
for a linear functional ϕ : X → K (not necessarily bounded!) and a number α ∈ R .

Theorem 3.5 (Hahn-Banach (geometric)). Let X be a normed space and let A, B ⊆ X
be nonempty and convex with A ∩ B = ∅.

a) Suppose that A is open. Then there exists a bounded linear functional ϕ ∈ X′ and a
number α ∈ R such that the hyperplane [ϕ = α] separates A and B, that is:

Re ϕ(a) < α ≤ Re ϕ(b) (a ∈ A, b ∈ B).

b) Suppose that A is compact and B is closed. Then there exists a bounded linear func-
tional ϕ ∈ X′ and a number α ∈ R such that the hyperplane [ϕ = α] strictly

14
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separates A and B, that is, there exists ε > 0 such that:

Re ϕ(a) ≤ α − ε < α ≤ Re ϕ(b) (a ∈ A, b ∈ B).

Note that one can easily construct counterexamples (already in the plane X = R2)
where the assertion of Theorem 3.5 is false if A and B are not convex.

3.2 Weak convergence

For the following, it will often be convenient to use the notion of a duality pair. We
write

⟨ϕ, x⟩X′,X = ϕ(x) (ϕ ∈ X′, x ∈ X).

As usual, if the pair X and X′ is clear from context, we skip the index. It is useful to
note that

X′ × X ∋ (ϕ, x) 7→ ⟨ϕ, x⟩ ∈ K (3.1)

is a bilinear mapping.

We next introduce a new notion of convergence (and thus topology) on a normed
vector space X. This will be weak convergence. A sequence (xk) ⊆ X converges
weakly to x ∈ X if

⟨ϕ, xk⟩ → ⟨ϕ, x⟩ in K (ϕ ∈ X′).

We say that x is the weak limit of (xk) and write xk ⇀ x. Note that the weak limit is
unique and thus well defined by Corollary 3.3.

The name weak is appropriate, because weak convergence is indeed weaker than con-
vergence with respect to the norm on X. In fact, every (norm) convergent sequence
(xk) is also weakly convergent with the same limit since∣∣⟨ϕ, xk⟩ − ⟨ϕ, x⟩

∣∣ ≤ ∥ϕ∥X′∥xk − x∥X (ϕ ∈ X′).

A set U ⊆ X is called weakly closed if for every weakly convergent sequence, the
(weak) limit is again an element of U. We have the following very useful consequence
of the Hahn-Banach theorem:

Lemma 3.6. Let X be a normed vector space and let U ⊆ X be closed and convex. Then
U is weakly closed.

Proof. We use the Hahn-Banach theorem in its geometric form, Theorem 3.5. If U = ∅,
there is nothing to prove. Otherwise let U be closed and convex and let U ∋ xk ⇀ x
be a weakly convergent sequence with limit x. Suppose that x ∈ X \ U, i.e., that the
sets {x} and U are disjoint. Clearly, {x} is a compact set in X. Hence the Hahn-Banach
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theorem says that there exists a hyperplane [ϕ = α] induced by ϕ ∈ X′ and α ∈ R

which strictly separates {x} and U. In particular, there exists ε > 0 such that

Re⟨ϕ, x⟩ ≤ α − ε < α ≤ Re⟨ϕ, xk⟩ (k ∈ N).

But then ∣∣⟨ϕ, xk⟩ − ⟨ϕ, x⟩
∣∣ ≥ ε (k ∈ N)

which is a contradiction to xk ⇀ x. So x ∈ U and U is weakly closed.

Remark 3.7. The notion “weak” in weak convergence is not to be taken lightly.
Note for instance how in Lemma 3.6, we had to require a strong structural property
(convexity) together with “ordinary” closedness to obtain weak closedness. This
is because weak closedness is a stronger property than regular closedness, because
it makes an assertion about a larger class of sequences.

Also, one should by no means expect any kind of approximating behavior from
weak convergence. We will soon learn to know generic families of sequences (xk)
such that ∥xk∥ = 1, but xk ⇀ 0.

We now come to the possibly most useful property of the weak topology or conver-
gence. To set the stage, we mention the following result:

Proposition 3.8. Let X be a normed vector space. Then the closed unit ball B(0, 1) is
compact if and only if X is finite-dimensional.

This proposition is of course bad news. It says that a compact set in an inifinite-
dimensional space must be much “smaller” than a ball. In particular, a bounded
and closed set in an infinite-dimensional normed vector space is not necessarily com-
pact!

But we have just learned that there are much more weakly convergent sequences than
norm convergent ones. So maybe a bounded sequence always has a weakly conver-
gent subsequence? (We will later also see that every weakly convergent sequence is in
fact bounded.) This is not true for every Banach space, but for many. And, conversely,
the lack of this property for a Banach space X makes life much harder working with
X.

To fix the notion, we say that a set U ⊆ X is weakly compact if every sequence
in U admits a weakly convergent subsequence whose limit is again in U. Unfortu-
nately, we also need to introduce a somewhat technical property to make a meaning-
ful statement. It is about the bidual X′′ := (X′)′ of X, that is, the space of all bounded
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linear functionals on X′. This may seem like a very abstract object, but it at least in-
cludes a subspace which is isomorphic to X itself: Indeed, given x ∈ X, the mapping
ϕ 7→ ⟨ϕ, x⟩ is a continuous linear functional on X′, recall (3.1). Hence

J : x 7→
[
ϕ 7→ ⟨ϕ, x⟩

]
∈ L(X → X′′).

We usually call J the canonical injection. The following relation is memorable:〈
Jx, ϕ

〉
X′′,X′ = ⟨ϕ, x⟩X′,X (ϕ ∈ X′, x ∈ X).

The canonical injection is in fact an isometry, so ∥Jx∥X′′ = ∥x∥X, and thus injective,
but it may fail to be surjective. If it is surjective, then X and X′′ are (isometrically)
isomorphic via the canonical injection J and this warrants its own name.

Definition 3.9. Let X be a Banach space. We say that X is reflexive if the canonical
injection J ∈ L(X → X′′) is surjective.

Note that X is necessarily a Banach space if it is reflexive, because it is then (isomet-
rically) isomorphic to a dual space X′′ = (X′)′ which is always complete by Theo-
rem 2.3. Now we can finally state the far-reaching result we have been aiming for:

Theorem 3.10. Let X be a Banach space. Then X is reflexive if and only if the closed unit
ball B(0, 1) is weakly compact.

Corollary 3.11. Let X be a reflexive Banach space. Then every bounded, closed and convex
set is weakly compact.

It follows immediately that reflexivity is inherited to closed subspaces:

Lemma 3.12. Let X be a reflexive Banach space and let M be a closed subspace. Then
(M, ∥ · ∥X) is also a reflexive Banach space.

Reflexivity in general and weak compactness of bounded, closed and convex sets is an
extremely useful property and whole approaches to PDEs build upon this property.
In fact, it is the backbone of the Galerkin method13 which is already reason enough
to introduce it here, although we will not cover this method in this lecture.

13Boris Grigorjewitsch Galjorkin (1871–1945)
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3.3 Examples

1. In Euclidean space X = Kn, we have X′ = Kn. Thus Kn is clearly reflexive. Also,
xk ⇀ x if and only if xk → x, so weak convergence and the weak topology are
not very interesting here. All this is also true for any finite-dimensional Banach
space X since these are isomorphic to Kn with n being the dimension of X.

2. Let (Ω,A, µ) be a σ-finite measure space. For 1 ≤ p < ∞, we have

Lp(Ω, µ)′ = Lq(Ω, µ)
( 1

p
+

1
q
= 1

)
.

in the sense of (isometrically) isomorphic. The isomorphism is given by

Ψ : Lq(Ω, µ) ∋ f 7→
[

g 7→
∫

Ω
f (x)g(x)dµ(x)

]
∈ Lp(Ω, µ)′,

so
⟨Ψ f , g⟩ :=

∫
Ω

f (x)g(x)dx
(

f ∈ Lq(Ω, µ), g ∈ Lp(Ω, µ)
)
.

We usually identify f ∈ Lq(Ω, µ) with Ψ f ∈ Lp(Ω, µ)′ without further notice.
The dual space L∞(Ω, µ)′ of L∞(Ω, µ) is in general—if Ω is not pathological—
larger than L1(Ω, µ). In particular, Lp(Ω, µ) is reflexive for 1 < p < ∞ and
L2(Ω, µ) is (isometrically) isomorphic to its own dual space. (This is a manifes-
tation of higher powers—that L2(Ω, µ) is a Hilbert space—as we will see later.)

3. Let E ⊂ Rn be compact and consider the continuous functions C(E) on E
equipped with the supremum norm. Then C(E)′ = M(E), where M(E) de-
notes the space of Radon measures14 on E. The duality relation is given by

⟨µ, f ⟩C(E)′,C(E) :=
∫

E
f (x)dµ(x) (µ ∈ M(E), f ∈ C(E)).

Since M(E)′ ̸= C(E), the latter is not reflexive. This is a major drawback of the
space of continuous functions. (In fact, this manifestation of non-reflexivity is
related to the structure of the supremum norm and occurs, as a rule of thumb,
whenever a similar norm is in play; as noted above, L∞(Ω, µ) is also not reflex-
ive!)

4 Linear operators in Banach spaces

4.1 Main theorems about linear operators in Banach spaces

We next give three fundamental theorems about bounded linear operators between
Banach spaces and some of their consequences. The proofs of these fundamental the-

14Johann Radon (1887–1956)
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orems are based on the important Baire category theorem15:

Theorem 4.1 (Baire Category Theorem). Let X be a Banach space and let (Uk) be a
sequence of closed subsets of X. If int(Uk) = ∅ for all k ∈ N, then

int
( ∞⋃

k=1

Uk

)
= ∅.

It is in Theorem 4.1 where (a lot of) the “Banach space magic” happens and indeed,
the following results which are proved from Theorem 4.1 are quite fundamental and
also somewhat surprising.

The Uniform Boundedness Principle

The first one is the uniform boundedness principle, also known as the Banach-
Steinhaus theorem.16

Theorem 4.2 (Uniform Boundedness Principle). Let X, Y be Banach spaces and let
F ⊆ L(X → Y) be a family of bounded linear operators between X and Y. Then either
there exists a dense set U ⊆ X such that

sup
A∈F

∥Ax∥Y = ∞ (x ∈ U),

or
sup
A∈F

∥A∥X→Y < ∞.

Proof. If
C := sup

A∈F
∥A∥X→Y < ∞,

then
sup
A∈F

∥Ax∥Y ≤ sup
A∈F

∥A∥X→Y∥x∥X ≤ C∥x∥X < ∞ (x ∈ X).

For the converse, suppose that for all dense sets U ⊆ X, we have

sup
A∈F

∥Ax∥Y < ∞ (x ∈ U).

15René-Louis Baire (1874–1932)
16Władysław Hugo Dionizy Steinhaus (1887–1972)
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Without loss of generality we can thus assume that U = X. Next, consider the sets

Uk :=
{

x ∈ X : ∥Ax∥Y ≤ k for all A ∈ F
}

(k ∈ N).

It is easily seen that each Uk is closed. Moreover, by assumption, ∪∞
k=1Uk = X. Since

int(X) = X ̸= ∅, there must exist an index n ∈ N such that int(Un) ̸= ∅. Oth-
erwise the Baire category theorem (Theorem 4.1) would give a contradiction. Pick
x ∈ int(Un). By definition, there exists r > 0 such that B(x, r) ⊆ Un. Without loss of
generality, we can even assume that B(x, r) ⊆ Un. (Replace the original r by r/2.) We
write y ∈ B(x, r) in the form y = x + rz with ∥z∥ ≤ 1 and obtain

∥Az∥Y =
∥A(x + rz)− Ax∥Y

r
≤ 2n

r
(z ∈ B(0, 1), A ∈ F ).

The claim follows.

The uniform boundedness principle is a quite surprising result, because it says that
if a family of operators F is bounded in a pointwise (local) sense, then it is already
bounded in a uniform (global) sense in the operator norm. Moreover, if the family F
is not uniformly bounded in the operator norm, then the pointwise unboundedness
must already manifest on a dense set U ⊆ X. This is a quite extraordinary property
of linear operators between Banach spaces.

Note that the uniform boundedness principle as in Theorem 4.2 does not imply that
there exists some “limit operator”for F . For this we need an extra assumption.

Lemma 4.3. Let (Ak) ⊆ L(X → Y) be a sequence of linear operators between Banach
spaces X and Y. Suppose that for every x ∈ X, the limit limk→∞ Akx exists in Y. We call
this limit Ax. Then A ∈ L(X → Y) with

∥A∥X→Y ≤ lim inf
k→∞

∥Ak∥X→Y and sup
k∈N

∥Ak∥X→Y < ∞.

Another consequence of the uniform boundedness principle (Theorem 4.2) is that we
can determine boundedness of a set U ⊆ X by looking at U through linear bounded
functionals:

Lemma 4.4. Let X be a Banach space and U ⊆ X. Suppose that each of the sets

U′
ϕ :=

{
⟨ϕ, x⟩ : x ∈ U

}
⊆ K (ϕ ∈ X′)

is bounded. Then U is bounded.
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Remark 4.5. Lemma 4.4 is another manifestation of the leitmotif that the applica-
tion ⟨ϕ, x⟩ of bounded linear functionals ϕ ∈ X′ to x ∈ X is a means of replacing
the concept of coordinates in finite-dimensional spaces Kn. Indeed, a set U ⊆ Kn is
bounded if and only if it is bounded in every coordinate. This can be reproduced
by Lemma 4.4 by observing that the “k-coordinate extraction” x = (x1, . . . , xn) 7→
xk is a continuous linear functional on Kn for k = 1, . . . , n induced by the unit
vector ek which is 1 at coordinate k and 0 otherwise.

In this context, recall also Corollary 3.3 and how it tells us that we are always able
to distinguish two elements x ̸= y ∈ X by bounded linear functionals.

It follows that weakly convergent sequences are bounded, as announced earlier.

Corollary 4.6. Let X be a Banach space and let (xk) be a weakly convergent sequence in
X. Then (xk) is bounded in X.

The Open Mapping Theorem and the Closed Graph Theorem

We now give two further fundamental theorems which can be inferred from Theo-
rem 4.1. The first one is the open mapping theorem:

Theorem 4.7 (Open Mapping Theorem). Let X, Y be Banach spaces and suppose that
A ∈ L(X → Y) is surjective. Then A is open, that is, if U ⊆ X is open, then AU ⊆ Y
is also open. Equivalently, there exists an r > 0 such that

B(0, r) ⊆ AB(0, 1). (4.1)

Remark 4.8. Clearly, (4.1) is also a sufficient condition for A to be surjective. In this
sense, we could formulate Theorem 4.7 also by saying that, for Banach spaces X
and Y, a bounded linear operator A ∈ L(X → Y) is surjective if and only if it is
open.

If A is surjective, then it is trivial that B(0, r) ⊆ AX = ran(A) = Y for all r > 0. Thus,
the assertion in Theorem 4.7 is that the “full dimensionality” of AX = Y is already
achieved by the image of any ball around 0 in X.

Recall further that a function f : X → Y is continuous if and only if for every open set
V ⊆ Y, the preimage f−1[V] ⊆ X is also open. Thus we obtain the following very
useful form of the open mapping theorem, the bounded inverse theorem:
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Theorem 4.9 (Bounded Inverse Theorem). Let X, Y be Banach spaces and suppose that
A ∈ L(X → Y) is bijective. Then the inverse operator A−1 is also linear and continuous,
i.e., A−1 ∈ L(Y → X).

Again, this is a most astonishing result. Of course, a bijective function always admits
an inverse. But a priori this inverse function has no reason at all to be continuous!
However, Theorem 4.9 tells us that it is indeed the case for bounded linear operators
between Banach spaces.

The other main theorem is the closed graph theorem. We need to say what we mean
by a closed graph first. Recall that the cartesian product X × Y is a Banach space if
X, Y are Banach spaces and X×Y is equipped with the norm ∥(x, y)∥ := ∥x∥X + ∥y∥Y.
(This will be a convenient choice.)

Definition 4.10 (Graph, closed operator). Let X, Y be Banach spaces and let A : X ⊇
dom(A) → Y be a linear (unbounded) operator between X and Y with domain
dom(A). The graph of A is given by

graph(A) :=
{
(x, Ax) ∈ X × Y : x ∈ dom(A)

}
⊆ X × Y.

We say that A is closed if graph(A) is closed in X × Y. The graph norm ∥ · ∥A on
dom(A) is given by

∥x∥A := ∥x∥X + ∥Ax∥Y (x ∈ dom(A)).

Remark 4.11. By definition, graph(A) is closed in X × Y if and only if for every
convergent sequence dom(A) ⊇ xk → x ∈ X for which (Axk) is also convergent
in Y with limit y, we have x ∈ dom(A) and Ax = y. In this case, graph(A) is also
a Banach space if equipped with the norm of X × Y.

Via Remark 4.11, we easily see that the kernel ker(A) of a closed operator is closed in
X. Moreover, a continuous function between X and Y is always closed. (In fact, this
property does not rely on linearity at all.) The converse statement, for which linearity
is however fundamental, is the closed graph theorem:

Theorem 4.12 (Closed Graph Theorem). Let X, Y be Banach spaces and let A : X → Y
be a closed linear operator. Then A is continuous.

Proof. Consider the graph norm ∥x∥A on X. Since A is assumed to be closed, it is easy
to see that (X, ∥ · ∥A) is a Banach space. Moreover, of course,

∥x∥X ≤ ∥x∥A (x ∈ X).
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Hence the identity mapping is bijective and continuous as a linear operator (X, ∥ ·
∥A) → (X, ∥ · ∥X). By the bounded inverse theorem (Theorem 4.9), it is also contin-
uous and linear (X, ∥ · ∥X) → (X, ∥ · ∥A). In particular, there exists a constant C ≥ 0
such that

∥Ax∥Y ≤ ∥x∥X + ∥Ax∥Y = ∥x∥A ≤ C∥x∥X (x ∈ X).

Hence, if xk → x in X, then Axk → Ax in Y and A is continuous.

Remark 4.13. We have proven the closed graph theorem by appealing to the open
mapping theorem via the bounded inverse theorem. It is also possible to proceed
inversely, i.e., prove the open mapping theorem via the closed graph theorem.

The concept of a closed operator within the class of unbounded operators can be
confusing. We try to shed some more light on it. Suppose that A is an unbounded
linear operator between X and Y with domain dom(A).

• If dom(A) is in fact a closed subspace of X, then dom(A) is also a Banach space
with respect to ∥ · ∥X, and we can consider A as a linear operator Adom between
(dom(A), ∥ · ∥X) and Y. Per the closed graph theorem (Theorem 4.12), Adom is
continuous if and only if it is closed, and then it is also continuous as a linear op-
erator X ⊇ dom(A) → Y. There is however no unique (continuous) extension
to the whole X in general.

• The operator A is always continuous from (dom(A), ∥ · ∥A) to Y. If A is closed,
then (dom(A), ∥ · ∥A) is always a Banach space. This may seem like conjuring
good properties from thin air, but essentially, the graph norm is often not very
useful if not used in the context of the closed graph theorem (Theorem 4.12).

In practice there are many closed operators which are not continuous. We just have
seen that this can only occur when dom(A) is not a closed subspace of X. (And we
do not consider the graph norm on dom(A).) In fact, many of the most interesting
operators—such as the derivative—are closed and densely defined unbounded op-
erators. It is thus of elevated interest to to conceptual reasons to study closed un-
bounded operators.

4.2 Adjoint operators

If A is a linear operator between X = Kn and Y = Km, then we know that it is rep-
resented by a matrix A ∈ Km×n. The Hermitian (or transpose) AH ∈ Kn×m can then
be considered as the representative of a linear operator Km → Kn. We consider the
corresponding general construction for linear unbounded operators between Banach
spaces X and Y. To fix the ideas, let A ∈ L(X → Y). Then[

x 7→ ⟨ϕ, Ax⟩
]
∈ X′ (ϕ ∈ Y′).
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In particular,

ϕ 7→
[

x 7→ ⟨ϕ, Ax⟩
]

is a continuous linear operator from Y′ to X′. We denote this operator by A′ ∈ L(Y′ →
X′). It is characterized by the memorable relation〈

A′ϕ, x⟩X′,X =
〈
ϕ, Ax⟩Y′,Y (ϕ ∈ Y′, x ∈ X)

from which we see its relation to the Hermitian/transpose of a matrix. (In fact, we
note that AH should be interpreted the representative of a linear mapping (Km)′ →
(Kn)′.)

If A is an unbounded operator, then the foregoing assertions are not so immediate
and we need to be a bit more careful.

Definition 4.14 (Adjoint operator). Let X, Y be normed vector spaces. Let further
A : X ⊇ dom(A) → Y be an unbounded operator between X and Y which is
densely defined. Then we define the adjoint operator A′ as an unbounded operator
Y′ ⊇ dom(A′) → X′ as follows:

dom(A′) :=
{

ϕ ∈ Y′ : ∃x′ ∈ X′ :
〈
ϕ, Ax

〉
Y′,Y = ⟨x′, x⟩X′,X for all x ∈ dom(A)

}
,

A′ϕ := x′.

Note that x′ in Definition 4.14 is unique, if it exists. This follows from the assumption
that dom(A) is dense in X. Again we have the fundamental relation〈

A′ϕ, x⟩X′,X =
〈
ϕ, Ax⟩Y′,Y (ϕ ∈ dom(A′), x ∈ dom(A)).

Some permanence principles for adjoint operators in the situation of Definition 4.14:

• Suppose that B ∈ L(X → Y). Then

(A + B)′ = A′ + B′ with dom((A + B)′) = dom(A′).

• If C ∈ L(Y), then consider the operator CA on X with dom(CA) = dom(A).
We have

(CA)′ = A′C′ with dom((CA)′) :=
{

ϕ ∈ Y′ : C′ϕ ∈ dom(A′)
}

.

Remark 4.15. The adjoint operator A′ as in Definition 4.14 is always closed: Sup-
pose that ϕk → ϕ in Y′ and A′ϕk → x′ in X′. Then〈

x′, x
〉

X′,X = lim
k→∞

〈
A′ϕk, x

〉
X′,X = lim

k→∞

〈
ϕk, Ax

〉
Y′,Y =

〈
ϕ, Ax

〉
X′,X (x ∈ dom(A)),
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hence ϕ ∈ dom(A′) and x′ = A′ϕ in X′. But it may happen that dom(A′) is not
dense in Y′. We will see an unpleasant consequence of that below in Lemma 4.18.
Still, if Y is reflexive, then dom(A′) is dense in Y′.

With an argument similar to the one in Remark 4.15, we can prove the following
useful property:

Lemma 4.16. Let X, Y be normed vector spaces and let A ∈ L(X → Y). If xk ⇀ x in X,
then Axk ⇀ Ax in Y. That is, a continuous linear operator is weakly continuous.

There is a natural relation between surjectivity of A (or A′) and injectivity of A′ (or
A), respectively. This relies on a certain orthogonality type relation between ker(A)
and ran(A′) and ker(A′) and ran(A), respectively. To formulate this properly, a defi-
nition:

Definition 4.17 (Annihilator). Let X be a normed vector space and let U ⊆ X and
V ⊆ X′ be linear subspaces. Then

U⊥ :=
{

ϕ ∈ X′ : ⟨ϕ, u⟩ = 0 for all u ∈ U
}
⊆ X′

and
V⊥ :=

{
x ∈ X : ⟨ϕ, x⟩ = 0 for all ϕ ∈ V

}
⊆ X

denotes the annihilator of U and V, respectively.

It is useful to imagine U⊥ as orthogonal to U, and analogously for V⊥ and V. Note
further that in the situation of Definition 4.17, U⊥ and V⊥ are closed subspaces of X
and X′, respectively. Moreover, U⊥

= U⊥ and V⊥ as well as

(U⊥)⊥ = U and (V⊥)⊥ ⊇ V, (4.2)

with equality in the latter if X is reflexive.

Lemma 4.18. Let X, Y be normed vector spaces and let A be an unbounded closed linear
operator between X and Y with dense domain dom(A). Then we have the following:

a) A ∈ L(X → Y) if and only if A′ ∈ L(Y′ → X′) and ∥A∥X→Y = ∥A′∥Y′→X′ .

b) If A′ is is surjective, then A is injective, and if A is surjective, then A′ is injective:

ker(A) = ran(A′)⊥ and ker(A′) = ran(A)⊥.

c) If A′ is injective, then A has dense range: ker(A′)⊥ = ran(A).
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d) We have ker(A)⊥ ⊇ ran(A′). Moreover, if X is reflexive: ker(A)⊥ = ran(A′), so
if A is injective, then A′ has dense range.

Proof. a) By Corollary 3.4:

∥A∥X→Y = sup
∥x∥≤1

∥Ax∥Y = sup
∥x∥X≤1
∥ϕ∥Y′≤1

〈
ϕ, Ax

〉
= sup

∥x∥X≤1
∥ϕ∥Y′≤1

〈
A′ϕ, x

〉
= sup

∥ϕ∥Y′≤1
∥A′ϕ∥X′ = ∥A′∥Y′→X′ .

b) We prove ker(A′) = ran(A)⊥. We do not need that A is closed for this identity,
but it is crucial that A is densely defined:

ϕ ∈ ker(A′) ⇐⇒
〈

A′ϕ, x
〉
= 0 (x ∈ X)

⇐⇒ ⟨A′ϕ, x⟩ = 0 (x ∈ dom(A))

⇐⇒
〈
ϕ, Ax

〉
= 0 (x ∈ dom(A)) ⇐⇒ ϕ ∈ ran(A)⊥.

Now ker A = ran(A′)⊥. We try to do the same:

x ∈ ker(A) ⇐⇒
〈
ϕ, Ax

〉
= 0 (ϕ ∈ Y′)

=⇒ ⟨ϕ, Ax⟩ = 0 (ϕ ∈ dom(A′))

⇐⇒
〈

A′ϕ, x
〉
= 0 (ϕ ∈ dom(A′)) ⇐⇒ x ∈ ran(A′)⊥.

Thus we only find ker(A) ⊆ ran(A′)⊥. (The culprit here is dom(A′) not nec-
essarily being dense in Y′!) But so far we have not used that A is closed, so
this will be the way to go. We want to show that ran(A′)⊥ ⊆ ker(A). Assume
that there is x̄ ∈ ran(A′)⊥ such that x̄ /∈ ker(A), that is, either x̄ /∈ dom(A)
or Ax̄ ̸= 0. These conditions can be summarized to (x̄, 0) /∈ graph(A). By as-
sumption, graph(A) is closed. Hence, the geometric Hahn-Banach theorem (The-
orem 3.5) strikes, and there exist (ϕ, ψ) ∈ (X × Y)′ = X′ × Y′ and α ∈ R as well
as ε > 0 such that

Re⟨ϕ, x̄⟩ ≤ α − ε < α ≤ Re⟨ϕ, x⟩+ Re⟨ψ, Ax⟩ (x ∈ dom(A)).

Suppose that there exists x ∈ dom(A) such that the right-hand side in the fore-
going inequality is nonzero. Then λx ∈ dom(A) for all λ ∈ R and

λ =
α − 1

Re⟨ϕ, x⟩+ Re⟨ψ, Ax⟩ =⇒ Re⟨ϕ, λx⟩+ Re⟨ψ, λAx⟩ = α − 1,

which is a contradiction. Hence

Re⟨ϕ, x⟩ = −Re⟨ψ, Ax⟩ (x ∈ dom(A)).
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It follows that also

Im⟨ϕ, x⟩ = −Re⟨ϕ, ix⟩ = Re⟨ψ, A(ix)⟩ = − Im⟨ψ, Ax⟩ (x ∈ dom(A)),

so
⟨ϕ, x⟩ = −⟨ψ, Ax⟩ (x ∈ dom(A)).

In particular, −ψ ∈ dom(A′) and A′(−ψ) = ϕ. But then ϕ ∈ ran(A′), so that
due to x̄ ∈ ran(A′)⊥,

Re⟨ϕ, x̄⟩ = 0 = Re⟨ϕ, x⟩+ Re⟨ψ, Ax⟩ (x ∈ dom(A)).

This is again a contradiction. Hence (x, 0) ∈ graph(A) and so ran(A′)⊥ ⊆
ker(A).

From the proof we also see that we can dispose of the assumption that A is
closed if we assume that Y is reflexive instead because then the first attempt of
the proof goes through; recall Remark 4.15.

c) Follows from (4.2).

d) Follows from (4.2) and the following remark.

Finally, an operator is continuously invertible if and only its adjoint is:

Proposition 4.19. Let X, Y be normed vector spaces and let A be an unbounded closed
linear operator between X and Y with dense domain dom(A). Then A is bijective and
A−1 ∈ L(Y → X) if and only if A′ is bijective and (A′)−1 ∈ L(Y′ → X′). In either
case,

(A−1)′ = (A′)−1.

4.3 Compact operators

We next consider operators inducing compactness in the following sense:

Definition 4.20 (Compact operator). Let X, Y be normed vector spaces and let A ∈
L(X → Y). We say that A is compact if ABX(0, 1) is compact in Y.

If A : X → Y is a linear operator and ABX(0, 1) is compact, then ABX(0, 1) is rela-
tively compact and thus bounded. In particular, A is bounded. This shows that the
requirement for A to be bounded in Definition 4.20 is in fact necessary.
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Remark 4.21. It is easy to see that the condition in Definition 4.20 is equivalent to
the following: Let (xk) ⊆ X be a bounded sequence. Then (Axk) ⊆ Y admits a
convergent subsequence.

We will learn much more about compact operators later when we come to spectral
theory. For now, we just collect some fundamental facts.

Proposition 4.22. Let X, Y be normed vector spaces and let A ∈ L(X → Y).

a) If ran(A) is finite-dimensional, then A is compact.

b) Let (Ak) be a sequence of compact linear operators X → Y. Suppose that Y is
complete and that Ak → A in L(X → Y). Then A is also compact.

Proof. a) If ran(A) is finite-dimensional, then by assumption, AB(0, 1) is a closed
and bounded subset of the finite dimensional normed vector space (ran(A), ∥ ·
∥Y) and thus compact (Proposition 3.8).

b) We argue using precompactness. Here it is important that Y is a Banach space.
Let ε > 0 and choose a number K ∈ N such that ∥A − AK∥X→Y < ε/2. By the
assumption on the sequence (Ak), we know that AKB(0, 1) is precompact in Y.
Hence, there exists N ∈ N and y1, . . . , yN ∈ AKB(0, 1) such that

AKB(0, 1) ⊆
N⋃

k=1

B(yk, ε/2).

Now let x ∈ X with ∥x∥ ≤ 1. Then ∥Ax − AKx∥ < ε/2 by choice of K. On
the other hand, there is i ∈ {1, . . . , N} such that ∥AKx − yi∥ < ε/2. So, by the
triangle inequality,

AB(0, 1) ⊆
N⋃

k=1

B(yk, ε).

and A is compact.

Note that if X is finite-dimensional, then ran(A) also is. This is a particular case in
Proposition 4.22. The next theorem shows that A and its adjoint A′ are of the same
quality.

Theorem 4.23 (Schauder17). Let X, Y be Banach spaces and let A ∈ L(X → Y). Then
A is compact if and only if A′ is compact Y′ → X′.

16Juliusz Schauder (1899–1943)

28



4 Linear operators in Banach spaces

In fact, compact operators translate weak convergence into strong convergence. This
is an extremely useful property to have although we will not see very much of it in
action in this lecture.

Lemma 4.24. Let X, Y be Banach spaces and let A ∈ L(X → Y) be compact. Suppose
that xk ⇀ x in X. Then Axk → Ax in Y.

Proof. In the proof we use the following elementary fact:

Nitpicker lemma: A sequence (xk) ⊆ X converges to x if and only if every subse-
quence admits a subsequence which converges to x.

Now let xk ⇀ x in X. Since X is a Banach space, the sequence (xk) is bounded by
Corollary 4.6. Thus, by compactness of A, the sequence (Axk) is relatively compact in
Y. In particular, there exists y ∈ Y and a subsequence (Axkℓ) such that Axkℓ → y in Y.
We want to show that y = Ax. To this end,

⟨ϕ, y⟩ = lim
ℓ→∞

〈
ϕ, Axkℓ

〉
= lim

ℓ→∞

〈
A′ϕ, xkℓ

〉
=

〈
A′ϕ, x

〉
= ⟨ϕ, Ax⟩ (ϕ ∈ Y′)

and y = Ax follows. But so far we have only proven that a subsequence of (Axk)
converges.

Now the Nitpicker lemma does its magic: Simply start the above proof with any subse-
quence (xkm) of (xk) instead of (xk) itself. Then we obtain that (Axkm) of (Axk) admits
a subsequence which converges to Ax. Hence (Axk) converges to Ax.

Remark 4.25. In fact, if X is reflexive and Y is a Banach space, then the converse
to Lemma 4.24 is also true: The operator A ∈ L(X → Y) is compact if and only if
for every weakly convergent sequence xk ⇀ x in X, we have Axk → Ax in Y. This
follows easily via Corollary 3.11.

Fredholm alternative

We next consider a quite fundamental and interesting property of a class of operators
for which compactness yields most useful properties. Recall that a continuous linear
operator T on a finite-dimensional normed vector space X is injective (ker T = {0})
if and only if it is surjective (ran T = X). But in infinite-dimensional spaces this is not
true at all, consider e.g. X = L2(R+) and T the right shift of length, say, 1:

(T f )(x) :=

{
f (x − 1) if x > 1,
0 if x ∈ (0, 1).
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Then T f = 0 if and only f = 0, each in L2(R+), but of course T is not surjective. The
following fundamental Fredholm alternative theorem says that this phenomenon
does not occur for operators of the form T = I − A with A ∈ L(X) compact:

Theorem 4.26 (Fredholm alternative). Let X be a Banach space and let A ∈ L(X) be
compact. Then we have the following properties:

a) ker(I − A) is finite-dimensional,

b) ran(I − A) is closed with ran(I − A) = ker(I − A′)⊥,

c) ker(I − A) = {0} if and only if ran(I − A) = X,

d) dim ker(I − A) = dim ker(I − A′).

Before we start with the proof, let us mention the dichotomy which give Theorem 4.26
its name. It says that either . . .

• for every f ∈ X, the equation x − Ax = f has a unique solution x ∈ X, or

• the homogeneous equation x − Ax = 0 admits N linearly independent solu-
tions; in this case, the inhomogeneous equation x − Ax = f admits a solution
if and only if f ∈ ker(I − A′)⊥. The latter in turn means that there are N basis
vectors ϕ1, . . . , ϕN of ker(I − A′) such that ⟨ϕk, f ⟩ = 0 for k = 1, . . . , N, so N
orthogonality relations.

This is the Fredholm alternative. We also note that if A is compact, then λ−1A is
compact for every λ ∈ K. Thus the Fredholm alternative in particular applies to the
equations

λx − Ax = f ⇐⇒ x − λ−1Ax = λ−1 f .

Proof. a) Let U = ker(I − A). This is a closed subspace of the Banach space X and
thus itself a Banach space. Let BU(0, 1) be the unit ball in U. Then ABX(0, 1) ⊇
ABU(0, 1) = BU(0, 1). But ABU(0, 1) is compact by assumption and thus so it
BU(0, 1). By Proposition 3.8, this implies that U is finite-dimensional.

b) Let ( fk) ⊆ ran(I − A) such that xk − Axk = fk → f in X. We need to show that
there is x ∈ X such that f = x − Ax, so f ∈ ran(I − A). Set dk = dist(xk, ker(I −
A)) = infy∈ker(I−A) ∥xk − y∥. We already know that ker(I − A) is finite dimen-
sional, so there exist yk ∈ ker(I − A) such that dk = ∥xk − yk∥. (See the exer-
cises.) Then

fk = (xk − yk)− A(xk − yk). (4.3)

Note that

dist(xk − yk, ker(I − A)) = dist(xk, ker(I − A)) = dk = ∥xk − yk∥. (4.4)
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We would like to extract convergent subsequences from A(xk − yk) in order to
have convergence in each term in (4.3). By compactness of A, this we are able to
do if whenever the sequence (xk − yk) is bounded.

Suppose it was not. Then there is a subsequence (xkℓ − ykℓ) such that ∥xkℓ −
ykℓ∥ → ∞. Let

wkℓ :=
xkℓ − ykℓ

∥xkℓ − ykℓ∥
be the normalized sequence. We have, recall (4.4), dist(wkℓ , ker(I − A)) = 1. On
the other hand, again by compactness of A, there exists yet another subsequence
(which we do not relabel) such that Awkℓ → z ∈ X. So, via (4.3) and convergence
of fk,

wkℓ − Awkℓ =
fkℓ

∥xkℓ − ykℓ∥
−→ 0.

Hence wkℓ → z ∈ ker(I − A). In particular, dist(wkℓ , ker(I − A)) → 0. This is a
contradiction. So (xk − yk) is a bounded sequence.

Accordingly, the sequence (A(xk − yk)) admits a (new) subsequence such that
(A(xkℓ − ykℓ)) → g ∈ X. Then, by (4.3), xkℓ − ykℓ → f + g. Hence A( f + g) = g
and

f = f + g − g = f + g − A( f + g),

so f ∈ ran(I − A). Hence I − A has closed range. Via Lemma 4.18 is then follows
that

ran(I − A) = ran(I − A) = ker((I − A)′)⊥ = ker(I − A′)⊥.

c) Suppose first that ker(I − A) = {0}. Suppose that ran(I − A) ̸= X. We already
know that ran(I − A) is closed, so it is a Banach space itself. Let X0 = ran(I −
A). Suppose that x = y − Ay ∈ X0 for some y ∈ X. Then Ax = Ay − AAy,
so A maps X0 into itself. In particular, if A0 denotes A restricted to X0, then
A0 ∈ L(X0 → X0) is compact and A1 := ran(I − A0), a subspace of X0, is
again closed. Moreover, X1 ⊊ X0: Pick y ∈ X \ X0. Then x := y − Ay ∈ X0.
Suppose that x ∈ X1. Then there is y0 ∈ X0 such that x = y0 − Ay0. But then
y − y0 ∈ ker(I − A) = {0} (assumption!), so y = y0. But this is not possible
since y ∈ X \ X0 and y0 ∈ X0. So X1 ⊊ X0.

Now set iteratively Xk := ran(I − Ak) to obtain a sequence of (strictly) decreas-
ing closed subspaces of X. By the Riesz lemma (exercises), we find a sequence
(xk) ⊂ X such that xk ∈ Xk with ∥xk∥ = 1 for k ∈ N and dist(xk, Xk+1) ≥ 1/2.
Since A is compact, (Axk) must have a convergent subsequence. We lead this to
a contradiction: Consider

Axk − Axℓ = −(xk − Axk)︸ ︷︷ ︸
∈Xk+1

+ (xℓ − Axℓ)︸ ︷︷ ︸
∈Xℓ+1

+ xk︸︷︷︸
∈Xk

− xℓ︸︷︷︸
∈Xℓ

.
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Without loss of generality, let k > ℓ. Then Xk+1 ⊊ Xk ⊆ Xℓ+1 ⊊ Xℓ and

−(xk − Axk) + (xℓ − Axℓ) + xk ∈ Xℓ+1

In particular,

∥Axk − Axℓ∥ ≥ dist(xℓ, Xℓ+1) ≥
1
2

,

so (Axk) cannot have a convergent subsequence. This is the contradiction. So
after all X = X0 = ran(I − A).

Conversely, suppose that ran(I − A) = X. From Lemma 4.18, we have that
ker(I − A′) = ran(I − A)⊥ = {0}. The Schauder theorem (Theorem 4.23) says
that A′ is also a compact operator. Hence from ker(I − A′) = {0} it follows that
ran(I − A′) = X′. But then Lemma 4.18 strikes again and gives ker(I − A) =
ran(I − A′)⊥ = {0}.

d) We skip this proof.

The Fredholm alternative as in Theorem 4.26 is a particular case of the more general
theory of Fredholm operators: If X, Y are Banach spaces and T ∈ L(X → Y), then we
say that T is a Fredholm operator (or Noether operator), if the following properties
hold true:

• ker(T) is finite-dimensional, and

• ran(T) is closed and has finite co-dimension, that is: there is a subspace Y0 ⊆ Y
with dim Y0 < ∞ such that Y = Y0 + ran(T).

(In fact, one can show that ran(T) is always closed if it has finite co-dimension, so the
latter is the actual requirement.) The index of a Fredholm operator is then

ind(T) = dim ker(T)− co dim ran(T).

The Fredholm alternative (Theorem 4.26) says that T = I − A with A ∈ L(X) compact
is a Fredholm operator of index 0.

4.4 Examples

1. Consider C([0, 1]) with the supremum norm and its subspace

C1([0, 1]) :=
{

f ∈ C([0, 1]) : f differentiable on (0, 1), f ′ ∈ C([0, 1])
}

of uniformly continuous and differentiable functions on [0, 1] with uniformly
continuous derivative. Let D : f 7→ f ′ be the derivative operator with domain
dom(D) = C1([0, 1]). Clearly, D is not bounded on C([0, 1]). (Construct a se-
quence ( fk) ⊂ C([0, 1]) with ∥ fk∥∞ = 1 but ∥ f ′k∥∞ = k.) But it is closed: If
fk → f and f ′k → g, each in C([0, 1]), then f ′ = g.
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2. We consider again the derivative operator D : f 7→ f ′, this time however on the
subspace

C0([0, 1]) :=
{

f ∈ C([0, 1]) : f (0) = 0
}

with domain dom(D) = C1
0([0, 1]) which is defined analogously to C0([0, 1]).

The derivative D is clearly still a closed operator in this context. But it has an
inverse which is continuous: Define I : C0([0, 1]) → C0([0, 1]) by

(I f )(t) :=
∫ t

0
f (τ)dτ (t ∈ [0, 1]).

Clearly, I f ∈ C1
0([0, 1]) ⊆ C0([0, 1]) and DI f = f for every f ∈ C0([0, 1]). On

the other hand, for every f ∈ dom(D) = C1
0([0, 1]),

(ID f )(t) =
∫ t

0
(D f )(τ)dτ =

∫ t

0
f ′(τ)dτ = f (t).

Hence I is the inverse to D. Moreover,∣∣(I f )(t)
∣∣ ≤ t∥ f ∥∞ ≤ ∥ f ∥∞ ( f ∈ C0([0, 1]), t ∈ [0, 1])

so I ∈ L(C0([0, 1])).

3. Let X, Y be Banach spaces and suppose that X ↪→ Y densely with the em-
bedding A. Then A′ ∈ L(Y′ → X′). Since A is an embedding, it is injec-
tive by definition. Hence, by Lemma 4.18, ran(A′)⊥ = {0} from which it fol-
lows that ran(A′) must be dense in X′. Moreover, Y = ran(A) = ker(A′)⊥, so
ker(A′) = {0}. Hence A′ is also an embedding and realizes Y′ ↪→ X′ densely.

4. Consider Lp(R) for 1 ≤ p < ∞ and the shift operator τh defined by (τh f )(x) :=
f (x + h) for some h ∈ R. It is easy to see that τh is an isometry on Lp(R). We
compute its adjoint: Every ϕ ∈ Lp(R)′ is given by ϕ = Ψg for a function g ∈
Lq(R) with 1

p +
1
q = 1, recall Section 3.3. Of course we use this representation:

⟨ϕ, τh f ⟩ = ⟨Ψg, τh f ⟩ =
∫

R
g(x) f (x + h)dx =

∫
R

g(x − h) f (x) = ⟨Ψτ−hg, f ⟩.

Hence τ′
h = Ψτ−hΨ−1. In particular, if ϕ ∈ Lp(R)′ corresponds to g ∈ Lq(R),

then τ′
hϕ corresponds to τ−hg.

5. Let E ⊆ Rn be compact. For 0 < α ≤ 1, consider the (α-)Hölder spaces18 C0,α(E)
of (α-)Hölder continuous functions on E defined by

C0,α(E) :=
{

f ∈ C(E) : | f |C0,α(E) < ∞
}

, ∥ f ∥C0,α(E) := ∥ f ∥∞ + | f |C0,α(E),

18Otto Hölder (1859–1937)
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with the (α-)Hölder-seminorm

| f |C0,α(E) := sup
x,y∈E
x ̸=y

| f (x)− f (x)|
|x − y|α .

It is trivial that C0,α(E) ↪→ C(E) for all 0 < α ≤ 1. In fact, the embedding is
compact, that is, if ( fk) is a sequence of Hölder continuous functions on E which
is bounded in the C0,α(E)-norm, then this sequence has a subsequence which
converges uniformly to some f ∈ C(E). This follows from the Arzelà-Ascoli
theorem19:

Theorem (Arzelà-Ascoli). Let E ⊆ Rn be compact. Then a set U ⊆ C(E) is
relatively compact in C(E) if and only U is bounded and equicontinuous: For
every ε > 0 there exists δ > 0 such that for all f ∈ U:

|x − y| ≤ δ =⇒ | f (x)− f (y)| ≤ ε (x, y ∈ E).

5 Hilbert spaces

We now turn to spaces which admit an inner product. This will allow for all sorts of
geometric intuition, in particular related to orthogonality. Let H be a vector space over
K. An inner product on H is a positive definite sesquilinear form (·, ·)H : H × H → K,
that is, for x, y, z ∈ H and α ∈ K we have

a) (x, y) = (y, x)H,

b) (x + αy, z)H = (x, z)H + λ(y, z)H,

c) (x, x)H ∈ R+ with (x, x)H = 0 ⇐⇒ x = 0.

It is easy to see that the first properties also imply

(x, y + αz)H = (x, y)H + α(x, z)H.

If K = R, then we need not bother with complex conjugation and the inner product
is merely a usual positive definite bilinear form on H. An inner product defines an
inner product norm | · |H on H by

|x|H :=
√
(x, x)H (x ∈ H). (5.1)

19Cesare Arzelà (1847–1912), Giulio Ascoli (1843–1896)
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As usual, if the inner product space H is clear from context, then we do not refer to
the index H and just write (·, ·) and | · |. The fact that (5.1) indeed defines a norm on
H follows from the fundamental Cauchy-Schwarz inequality20∣∣|(x, y)

∣∣ ≤ |x| |y| (x, y ∈ H)

which in turn implies the Minkowski inequality21

|x + y| ≤ |x|+ |y| (x, y ∈ H).

An inner product space norm (5.1) satisfies the parallelogram law

|x + y|2 + |x − y|2 = 2
(
|x|2 + |y|2

)
(x, y ∈ H). (5.2)

In fact, the parallelogram law characterizes normed vector spaces whose norm is given
by an inner product; see the exercises.

Finally, if the inner product space H is complete with respect to the norm (5.1), then
we say that H is a Hilbert space22.

First and most important examples of Hilbert spaces and non-Hilbert spaces are the
following:

a) Of course, H = Cn is a Hilbert space with the inner product (x, y) := ∑n
i=1 xiyi.

b) We already mentioned earlier that if (Ω,A, µ) is a σ-finite measure space, then
L2(Ω, µ) is a Hilbert space with the inner product

( f , g)L2(Ω,µ) :=
∫

Ω
f (x)g(x)dx ( f , g ∈ L2(Ω, µ)).

In particular, the standard L2(Ω, µ) norm coincides with the inner product norm
induced by (·, ·)L2(Ω,µ). But if the measure space is not degenerated, then Lp(Ω, µ)

is not an inner product space for p ∈ [1, ∞] \ {2}.

c) The vector space of continuous functions on [0, 1] equipped with the inner prod-
uct (·, ·)L2(0,1) is an inner product space. But it is not complete and thus not a
Hilbert space.

A most fundamental property of Hilbert spaces is that for every closed convex set,
we have a well defined projection:

20Baron Augustin-Louis Cauchy (1789–1857), Karl Hermann Amandus Schwarz (1843–1921)
21Hermann Minkowski (1864–1909)
22David Hilbert (1862–1943)
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Theorem 5.1 (Projection). Let ∅ ̸= K ⊆ H be a closed and convex subset of the Hilbert
space H. Then for every f ∈ H there exists a unique y ∈ K such that

| f − y| = min
x∈K

| f − x| = dist( f , K). (5.3)

Moreover, the vector y satisfying (5.3) is characterized by

y ∈ K, Re( f − y, y − x) ≥ 0 (x ∈ K). (5.4)

Proof. Let (xk) ⊆ K be a sequence such that | f − xk| → infx∈K | f − x| = dist( f , K).
We show that (xk) is a Cauchy sequence using the parallelogram law (5.2). Indeed,
we have ∣∣∣∣ f − xk + xℓ

2

∣∣∣∣2 + ∣∣∣∣xk − xℓ
2

∣∣∣∣2 =
| f − xk|2 + | f − xℓ|2

2
(k, ℓ ∈ N).

But (xk − xℓ)/2 ∈ K, so | f − (xk − xℓ)/2| ≥ dist( f , K). Hence∣∣∣∣xk − xℓ
2

∣∣∣∣2 ≤ | f − xk|2 + | f − xℓ|2

2
− dist( f , K)2 (k, ℓ ∈ N).

This implies that (xk) is a Cauchy sequence and, since we have assumed H to be a
Hilbert space, convergent with limit y, so xk → y. Since K was assumed to be closed,
y ∈ K, and by continuity of the norm, | f − y| = dist( f , K).

We next prove that (5.3) and (5.4) are equivalent. Suppose first that y ∈ K satisfies (5.3)
and let x ∈ K. Then z = (1 − t)y + tx ∈ K for every t ∈ (0, 1) by convexity of K, so

| f − y| ≤ | f − z| =
∣∣( f − y) + t(x − y)

∣∣.
Squaring and expanding the right-hand side, we obtain

| f − y|2 ≤
∣∣( f − y) + t(x − y)

∣∣2 = | f − y|2 + 2t Re( f − y, x − y) + t2|x − y|2

and so
2 Re( f − y, x − y) ≥ t|x − y|2 t↘0−−−→ 0.

This is (5.4). Conversely, suppose that (5.4) holds true. Then

| f − x|2 − | f − y|2 = | f − y + y − x|2 − | f − y|2 = 2 Re( f − y, y − x) + |x − y|2 ≥ 0

for all x ∈ K, and this implies (5.3).

It remains to show that y ∈ K characterized by (5.3) and (5.4) is unique. Suppose that
y1, y2 ∈ K satisfy (5.4). Then

|y1 − y2|2 = (y1 − y2, y1 − y2) = ( f − y2, y1 − y2) + (y1 − f , y1 − y2)

Taking the real part and using (5.4) shows that |y1 − y2|2 ≤ 0, hence y1 = y2.
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Definition 5.2 (Projection). In the setting of Theorem 5.1, we call y ∈ K character-
ized by (5.3) and (5.4) the projection of f onto K and write y = PK f .

We will assume that H is a Hilbert space from now on without further mentioning.

Of course, even in the general case with K convex and closed, the projection act lin-
early on K. (It is the identity there.) But in general, the projection PK is nonlinear.
However, it is still nonexpansive, so Lipschitz continuous with Lipschitz constant at
most 1:

Lemma 5.3. Let ∅ ̸= K ⊆ H be closed and convex. Then we have∣∣PK f − PKg
∣∣ ≤ | f − g| ( f , g ∈ H).

Proof. If PK f = PKg, then there is nothing to prove. So let PK f ̸= PKg. By characteri-
zation (5.4), we have

Re
(

f − PK f , PK f − PKg
)
≥ 0 and Re

(
g − PKg, PKg − PK f

)
≥ 0.

Adding these inequalities, we obtain

Re
(

f − g −
(

PK f − PKg
)
, PK f − PKg

)
≥ 0,

so by the Cauchy-Schwarz inequality∣∣PK f − PKg
∣∣2 ≤ Re

(
f − g, PK f − PKg

)
≤ | f − g||PK f − PKg|.

Since PK f ̸= PKg, this gives the claim.

Corollary 5.4. Suppose that M ⊆ H is a closed linear subspace. Then y = PM f is
characterized by

y ∈ M, ( f − y, x) = 0 (x ∈ M). (5.5)

In particular, f − PM f is orthogonal to M. Moreover, PM is in fact a bounded linear
operator on H which we call the orthogonal projection.

Proof. Let y = PM f . Then, by (5.4), Re( f − y, y − x) ≥ 0 for all x ∈ M. In particular,
since M is a linear space,

Re( f − y, y − αx) ≥ 0 ⇐⇒ Re( f − y, y) ≥ Re( f − y, αx) (x ∈ M, α ∈ R).

Assume there is x ∈ M such that ( f − y, x) ̸= 0. Then we get a contradiction in the
foregoing inequality by making the right-hand side arbitrarily large by appropriate
choice of α.
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Now suppose conversely that (5.5) is true. Since y ∈ M,

0 = −( f − y, x) = −( f − y, x) + ( f − y, y) = ( f − y, y − x) (x ∈ M).

This implies in particular (5.4), so y = PM f .

The characterization (5.5) shows that PM is linear, and we have already seen in Lemma 5.3
that it is (Lipschitz) continuous, so in particular bounded.

5.1 Dual space of a Hilbert space

From the Cauchy-Schwarz inequality, we see that we can immediately write down
bounded linear functionals on a Hilbert space: For every fixed y ∈ H, the mapping
x 7→ (x, y) is in H′. The following remarkable Riesz-Fréchet23 representation theorem
says that in fact every bounded linear functional on a Hilbert space is of that form:

Theorem 5.5 (Riesz-Fréchet representation theorem). Let ϕ ∈ H′ be a bounded linear
functional. Then there exists a unique y ∈ H such that

⟨ϕ, x⟩H′,H = (x, y)H (x ∈ H).

Moreover, ∥ϕ∥H′ = |y|H.

Proof. Set M = ker(ϕ). Since ϕ is continuous, M ⊆ H is a closed subspace. If M = H,
then ϕ is the zero functional, and the assertion is trivial with the choice y = 0. So we
can assume M ⊊ H. Thus there exists u ∈ H \ M. Define

v :=
u − PMu
|u − PMu| .

Then |v| = 1 and (v, x) = 0 for all x ∈ M due to the characterization (5.5). Now let
z ∈ H. Set

w := z − ⟨ϕ, z⟩
⟨ϕ, v⟩v.

We have

⟨ϕ, w⟩ = ⟨ϕ, z⟩ − ⟨ϕ, z⟩
⟨ϕ, v⟩ ⟨ϕ, v⟩ = 0,

so w ∈ ker(ϕ) = M. Thus

0 = (w, v) = (z, v)− ⟨ϕ, z⟩
⟨ϕ, v⟩ (v, v)

23Frigyes Riesz (1880–1958), Maurice René Fréchet (1878–1973)
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and we obtain (
z, ⟨ϕ, v⟩v

)
= ⟨ϕ, z⟩.

Hence y = ⟨ϕ, v⟩v satisfies the assertion.

Finally, from the Cauchy-Schwarz inequality we have ∥ϕ∥ ≤ |y|. On the other hand,
|y| = |⟨ϕ, v⟩| ≤ ∥ϕ∥ since |v| = 1. So |y| = ∥ϕ∥.

The Riesz-Frechet Theorem 5.5 implies the following fundamental structural proper-
ties of Hilbert spaces:

Proposition 5.6 (Fundamental structural properties of Hilbert spaces).

a) Every Hilbert space H is (antilinear) isometrically isomorphic to its dual space
H′. The (antilinear) isometry R : H′ → H is defined by

⟨ϕ, x⟩H′,H =
(
x, Rϕ

)
H (ϕ ∈ H′, x ∈ H).

b) Every Hilbert space H is reflexive.

Proof. The first assertion follows immediately from Theorem 5.5. (One also sees that
the constructed y depends on ϕ in an antilinear manner in the proof of Theorem 5.5.)
For reflexivity of H, note that(

ϕ, ψ
)

H′ :=
(

Rϕ, Rψ
)

H (ϕ, ψ ∈ H′)

defines an inner product on H′ with

∥ϕ∥H′ = |Rϕ|H =
√(

Rϕ, Rϕ
)

H = |ϕ|H′ ,

so H′ is also a Hilbert space and the dual norm agrees with the inner product norm.
Accordingly, it also admits an (antilinear) Riesz-Fréchet-isometry S : H′′ → H′ such
that 〈

Ψ, ϕ
〉

H′′,H′ =
(
ϕ, SΨ

)
H′ (Ψ ∈ H′′, ϕ ∈ H′).

Thus〈
Ψ, ϕ

〉
H′′,H′ =

(
ϕ, SΨ

)
H′ =

(
Rϕ, RSΨ

)
H

=
(

RSΨ, Rϕ
)

H =
〈
ϕ, RSΨ

〉
H′,H (Ψ ∈ H′′, ϕ ∈ H′).

Hence, by definition of the canonical injection J : H → H′′, recall Definition 3.9,
JRSΨ = Ψ; in particular, J is surjective and H is reflexive.
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Weak convergence

The Riesz-Fréchet theorem (Theorem 5.5) tells us that the functionals ϕ ∈ H′ are fully
represented by the inner product via R as in Proposition 5.6. Hence, it is not a surprise
that weak convergence in Hilbert spaces is completely characterized by convergence
in the inner product: Let (xk) ⊆ H and xk ⇀ x. Then

(xk, y) =
〈

R−1y, xk
〉

−→
〈

R−1y, x
〉
= (x, y) (y ∈ H).

Conversely, if (y, xk) → (y, x) for every y ∈ H, then

⟨ϕ, xk⟩ =
(
xk, Rϕ

)
−→

(
x, Rϕ

)
= ⟨ϕ, x⟩ (ϕ ∈ H′).

Hence xk ⇀ x in H if and only if (xk, y) → (x, y) for every y ∈ H.

The orthogonal complement

We already have investigated the annihilator U⊥ of a subspace U ⊆ H, recall Defini-
tion 4.17. With the knowledge of Theorem 5.5, we can give the orthogonality intuition
a literal foundation: We set

U⊥ :=
{

x ∈ H : (u, x) = 0 for all u ∈ U
}

.

Then U⊥ = RU⊥. Since now U⊥ ⊆ H, we can compare it with U, which is particularly
effective when U is closed:

Proposition 5.7 (Complemented subspace). Let U ⊆ H be a closed subspace. Then
U ∩ U⊥ = {0} and U is complemented, written H = U ⊕ U⊥: for every x ∈ H there
exists a unique decomposition x = u + v with u ∈ U and v ∈ U⊥. In fact, we have
|x|2 = |u|2 + |v|2 and u = PUx and v = (I − PU)x.

Proof. The intersection U ∩ U⊥ = {0} is obvious. Regarding the decomposition, we
have PUx ∈ U and (I − PU)x ∈ U⊥ by Corollary 5.4, uniqueness was stated in Theo-
rem 5.1. The norm equality follows from the Pythagoras theorem, since (u, v) = 0:

|x|2 = |u + v|2 = |u|2 + |v|2.

Note that Proposition 5.7 also implies that PU⊥ = I − PU.
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The Hilbert space adjoint

The adjoint operator A′ ∈ L(H′) of A ∈ L(H) was given by〈
ϕ, Ax

〉
=

〈
A′ϕ, x

〉
(ϕ ∈ H′, x ∈ H).

Now that we know that H and H′ are isometrically isomorphic in a canonical way,
we are interested in the Hilbert space adjoint A⋆ which should do(

Ax, y
)
=

(
x, A⋆y

)
(x, y ∈ H).

In order to see how this operator should look like, we calculate:(
Ax, y

)
=

(
Ax, RR−1y

)
=

〈
R−1y, Ax

〉
=

〈
A′R−1y, x

〉
=

(
x, RA′R−1y

)
(x, y ∈ H),

so A⋆ := RA′R−1. The general definition is then as follows:

Definition 5.8 (Hilbert space adjoint). Let A : H ⊇ dom(A) → H be a densely
defined unbounded linear operator in H. Then the Hilbert space adjoint A⋆ is a
densely defined unbounded linear operator defined by

dom(A⋆) :=
{

x ∈ H : R−1x ∈ dom(A′)
}

,

A⋆x := RA′R−1x.

Note that density of dom(A⋆) in H follows from density of dom(A′) in H′, see Re-
mark 4.15. The Hilbert space adjoint A⋆ is the unique operator which satisfies the
fundamental relation(

Ax, y
)
=

(
x, A⋆y

)
(x ∈ dom(A), y ∈ dom(A⋆)).

In this sense it fully generalizes the Hermitian of a matrix. But, in this context, a word
of caution: There holds

(λA)′ = λA′, but (λA)⋆ = λA⋆ (λ ∈ C),

due to the second component of an inner product being antilinear.

5.2 The Lax-Milgram lemma

We next come to one of the most important general results for elliptic PDEs, the Lax-
Milgram lemma24. This can (but need not be) formulated in the language of forms.
Recall that a form a : H × H → K is is sesquilinear if u 7→ a(u, v) is linear for every
v ∈ H, and v 7→ a(u, v) is linear for every u ∈ H.

24Peter Lax (1926–), Arthur Norton Milgram (1912–1961)
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Definition 5.9 (Continuous coercive form). Let a : H × H → K be a sesquilinear
form on H. Then:

a) We say that a is continuous if there is a constant C ≥ 0 such that

|a(u, v)| ≤ C |u||v| (u, v ∈ H), (5.6)

b) We say that a is coercive if there is a constant α > 0 such that

Re a(u, u) ≥ α|u|2 (u ∈ H). (5.7)

The coercivity property (5.7) is very interesting and will prove to be extremely useful.
Of course, the inner product a(u, v) := (u, v)H on a Hilbert space is a continuous
coercive sesquilinear form as the Cauchy-Schwarz inequality implies. In this sense the
following fundamental lemma is a generalization of the Riesz-Fréchet Theorem 5.5:

Theorem 5.10 (Lax-Milgram lemma). Let a : H × H → K be a continuous coercive
sesquilinear form. Then, for every ϕ ∈ H′, there is a unique u ∈ H such that

a(u, v) = ⟨ϕ, v⟩H′,H (v ∈ H). (5.8)

Moreover |u| ≤ α−1∥ϕ∥H′ , where α > 0 is a coercivity constant of a as in (5.7).

Before we give the proof, let us note a reformulation of Theorem 5.10: If a : H × H →
K is a continuous sesquilinear form, then for every u ∈ H, the mapping v 7→ a(u, v)
defines a continuous linear functional ψ on H. By Theorem 5.5,

a(u, v) = ⟨ψ, v⟩ = (v, Rψ) (v ∈ H).

We define A ∈ L(H) by Au := Rψ. Then

a(u, v) = (v, Au), so a(u, v) = (Au, v) (v ∈ H).

So, Theorem 5.10 becomes the question whether for every ϕ ∈ H′ there exists u ∈ H
with |u| ≤ α−1∥ϕ∥H′ such that

Au = Rϕ.

That is, whether A is invertible and ∥A−1∥H→H ≤ α−1 under the assumption that A
is positive definite:

Re(Au, u) ≥ α|u|2. (5.9)

We prove exactly this now.

Proof. The classical way to prove that A as constructed before is bijective, is as follows:
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i) A is injective,

ii) ran(A) is dense,

iii) ran(A) is closed.

So:

i) This is an immediate consequence of coercivity (5.7). Let Au = 0. Then

0 = Re
(

Au, u
)
= Re

(
u, Au

)
= Re a(u, u) ≥ α|u|2,

so u = 0.

ii) We show that ran(A)⊥ = {0}. Let u ∈ ran(A)⊥. Then (u, Av) = 0 for all v ∈ H.
In particular, (u, Au) = 0 and the foregoing coercivity argument applies.

iii) We estimate

α|u|2 ≤ Re a(u, u) = Re(Au, u) ≤
∣∣(Au, u)

∣∣ ≤ |Au||u| (u ∈ H),

so
α|u| ≤ |Au| (u ∈ H). (5.10)

Now consider a sequence (uk) ⊆ H such that (Auk) → v in H. We need to show
that v ∈ ran(A). The foregoing inequality (5.10) shows that (uk) is a Cauchy
sequence. Since H is a Hilbert space, it is convergent with limit u ∈ H. But then
v = Au by continuity of A, so ran(A) is closed.

So A is bijective. The bounded inverse theorem (Theorem 4.9) already implies that
A−1 is continuous. The claimed norm bound follows again from (5.10):

α
∣∣A−1v

∣∣ ≤ ∣∣AA−1v
∣∣ = |v| (v ∈ H).

It is imperative to note how the coercivity property (5.7) is used in every part of the
foregoing proof, whereas the construction of the operator A associated to a relied on
the linearity and continuity properties of a.

5.3 Orthonormal basis

We give another structural, approximation-type result for Hilbert spaces. To this end,
we define what we mean by an orthonormal basis.

Definition 5.11. Let (ek) ⊆ H be a sequence in H. We say that (ek) is an orthonor-
mal basis (ONB) of H (or a Hilbert basis, or a complete orthonormal system, or
just a basis), if the following conditions are satisfied:

a) We have |ek| = 1 for every k ∈ N and (ek, eℓ) = 0 for k ̸= ℓ.
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b) The linear span of (ek), so the set of all finite linear combinations of (ek), is
dense in H.

Then we have the following result:

Proposition 5.12. Let (ek) ⊂ H be an orthonormal basis of H. Then, for every u ∈ H:

u =
∞

∑
k=1

(u, ek)ek and |u|2 =
∞

∑
k=1

∣∣(u, ek)
∣∣2.

The infinite sums in Proposition 5.12 need be understood as convergence of the partial
sums sequence (Sn) in H, where

Sn :=
n

∑
k=1

(u, ek)ek (n ∈ N)

in case of the first one.

Proposition 5.12 has several interesting consequences some of which will be explored
in the exercises. For example, it implies that an orthonormal basis (en) is weakly con-
vergent to zero, although it lies on the unit sphere!

Finally, we mention a structural result for the class of separable Hilbert spaces.

Proposition 5.13. Every separable Hilbert space admits an ONB.

Proof. Let (xk) ⊆ H be a countable dense subset of H. Define Vn := span(x1, . . . , xn)
for n ∈ N. Then Vn ⊆ Vn+1 and

⋃∞
n=1 Vn is dense in H. Choose a unit vector v1 ∈ V1.

If V2 ̸= V1, then pick any vector u2 ∈ V2 \ V1. Set

v2 =
u2 − (v1, u2)v1

∥u2 − (v1, u2)v1∥
.

Then |v2| = 1 and (v1, v2) = 0. Moreover, V2 = span(v1, v2). Proceed iteratively to
construct a sequence (vk) which is then by construction an ONB.

We will learn to know a canonical way of constructing an orthonormal basis in Hilbert
spaces soon, by looking at the spectrum of normal or self-adjoint operators.
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Examples

1. Of course, the standard basis in Kn is an orthonormal basis in this Hilbert space
for which we have (x, ek) = xk, the k-th coordinate, so

x =
n

∑
k=1

xkek.

2. More interestingly: The two most classical orthonormal basis in the Lebesgue
Hilbert space L2(0, π) are given by

ek(x) :=

√
2
π

sin(kx) (k ≥ 1)

and

ek(x) :=

√
2
π

cos(kx) (k ≥ 0).

The verification that (ek, eℓ) = δk=ℓ, so 1 if k = ℓ and 0 otherwise, is an easy
exercise for integration by parts. From this example, one immediately obtains
an orthonormal basis family in L2(a, b) for a, b ∈ R with a < b by rescaling.

6 Spectral theory

In Linear Algebra we learn that the behavior of a linear mapping A : Cn → Cn is
fully described by its spectral values (eigenvalues) and the associated (generalized)
eigenvectors. The particularly nice case is if A is even normal, so AAH = AH A. Then
the basis of Cn made of eigenvectors of A can be chosen to be orthonormal and we
have A = UDUH, where D is a diagonal matrix made of eigenvalues of A and U is
the matrix whose columns are given by the eigenvectors of A. Even more, if A = AH,
then all eigenvalues of A are real and so is D.

We will try and obtain similar results also in the infinite-dimensional case. Of course,
things are slightly more involved, so we need some definitions first. We stay with the
case of bounded linear operators for now, since we ultimately will consider compact
operators. So, for the following, X is a fixed Banach space over K and we consider an
unbounded closed operator A : X ⊇ dom(A) → X.

Definition 6.1 (Spectrum, resolvent set, eigenvalue). The resolvent set ρ(A) is de-
fined by

ρ(A) :=
{

λ ∈ K : A − λ is bijective dom(A) → X
}

.

The spectrum σ(A) is given by the complement K \ ρ(A). We say that λ ∈ σ(A)
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is an eigenvalue if ker(A − λ) ̸= {0} and the set of eigenvalues is called the point
spectrum σP(A) ⊆ σ(A). For λ ∈ ρ(A), we call the operator R(λ, A) = (A −
λ)−1 ∈ L(X) the resolvent (operator).

Note that continuity of the resolvent follows automatically from the closed graph the-
orem (Theorem 4.12) because A ∈ L((dom(A), ∥ · ∥A) → X). In contrast to the finite-
dimensional case, the spectrum σ(A) does not consist of eigenvectors only. (Consider
again the right shift which we already had as a counterexample for an injective but
not surjective linear operator right before the Fredholm alternative Theorem 4.26.)

Here are a few useful simple equations following straight from the definition:

AR(λ, A) = λR(λ, A) + I (λ ∈ ρ(A)),

and the resolvent identity

R(λ, A)− R(µ, A) = (λ − µ)R(λ, A)R(µ, A) (λ, µ ∈ ρ(A)).

From this part we can already see that λ 7→ R(λ, A) will be differentiable. (Let λ =
µ + h and send h → 0.) In fact, much more is true as we can see in the proof of the
next important result. This is the part where it matters whether K = C or K = R.

Proposition 6.2. The spectrum σ(A) is a closed set in K. If A ∈ L(X), then σ(A) is
compact in K with

σ(A) ⊆
{

λ ∈ K : |λ| ≤ ∥A∥
}

.

If A ∈ L(X) and K = C, then the spectrum σ(A) is nonempty.

Proof. We show that the resolvent set ρ(A) is open. Let µ ∈ ρ(A) and λ ∈ K and write

A − λ = A − µ + µ − λ =
[
I + (µ − λ)R(µ, A)

]
(A − µ). (6.1)

Since µ ∈ ρ(A), the A − λ is a bijective operator if I + (µ − λ)R(µ, A) is bijective. But
this is the case if |µ − λ| < 1/∥R(µ, A)∥ (exercise). Hence ρ(A) is open and σ(A) is
closed.

Now let A ∈ L(X) and let λ ∈ K with |λ| > ∥A∥. Then the infinite sum

−
∞

∑
k=0

Ak

λk+1 = (A − λ)−1

exists in L(X) (exercise) and we have λ ∈ ρ(A). Hence, if µ ∈ σ(A), then we must
have |µ| ≤ ∥A∥. So σ(A) is a bounded and closed subset of K and thus compact.

Finally, if K = C, then the spectrum is in fact nonempty. This follows from a clever
application of Liouville’s theorem from complex analysis but we will not prove it
here.
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Remark 6.3. In the proof of Proposition 6.2, from (6.1) we find that λ 7→ R(λ, A) is
in fact (locally) analytic: if λ, µ ∈ ρ(A) such that |µ − λ| < 1/∥R(µ, A)∥, then again
using the infinite sum expansion, we obtain

R(λ, A) = R(µ, A)
[
I + (µ − λ)R(µ, A)

]−1
= R(µ, A)

∞

∑
k=0

(λ − µ)kR(µ, A)k

In particular,

dk

dλk R(λ, A) = (−1)kk!(λ − µ)kR(µ, A)k (k ∈ N).

Examples

Consider X = C([0, 1]) with the supremum norm. We pick up the derivative operator
from Section 4.4.

1. Let D : f 7→ f ′ be the derivative operator in X with domain dom(D) = C1([0, 1]).
Then σ(D) = K. Indeed, note that for every λ ∈ K

(D − λ) f = 0 ⇐⇒ f ′ = λ f ( f ∈ dom(D)),

so every solution to the ODE f ′(t) = λ f (t) is an eigenvector of D for the
eigenvalue λ. But clearly fλ(t) := eλt is such a solution for every λ ∈ K and
fλ ∈ dom(D) = C1([0, 1]). Hence σ(D) = σP(D) = K.

2. Now consider D on X with domain C0([0, 1]). We had already seen that D was
bijective with D−1 = I given by

(I f ) =
∫ t

0
f (τ)dτ (t ∈ [0, 1]).

Now let λ ∈ K and let Iλ : C([0, 1]) → C0([0, 1]) be defined by

(Iλ f )(t) :=
∫ t

0
eλ(t−τ) f (τ)dτ (t ∈ [0, 1]).

Then
DIλ f = f + λIλ, and IλD f = f + λIλ f .

In particular, Iλ = R(λ, D). Hence σ(D) = ∅ in this case.

Note how, as in the previous example, we again have the ODE f ′(t) = λ f (t) as
a necessary condition for f to be an eigenvector for the eigenvalue λ ∈ K, but
this time with an initial condition f (0) = 0, which enforces f = 0!
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3. Now let ∅ ̸= Ω ⊆ K be any compact set and consider the multiplication opera-
tor M : C(Ω) → C(Ω) given by

(M f )(x) := x · f (x) (x ∈ Ω).

Then one can show that σ(M) = Ω. One can construct a similar example also
for nonempty and closed sets Ω. In particular, the spectrum can be any set in K.

Residual spectrum and the adjoint

Let λ ∈ σ(A) \ σP(A). Then A − λ is not surjective. Hence ran(A − λ) is not dense
or not closed. (Of course both can happen at the same time.) It will thus be useful to
have another sub-classification of σ(A) \ σP(A):

Definition 6.4 (Residual spectrum). Let A : X ⊇ dom(A) → X be a closed un-
bounded operator. Then the residual spectrum σR(A) is given by

σR(A) :=
{

λ ∈ σ(A) : ran(A − λ) is not dense in X
}

.

The significance of the residual spectrum is the following characterization as the point
spectrum of the adjoint:

Lemma 6.5. Let A be a densely defined closed unbounded operator between Banach spaces
X and Y. Then we have

σR(A) = σP(A′) and σP(A) ⊆ σR(A′)

If X is reflexive, then also
σP(A) = σR(A′).

Proof. We rely on Lemma 4.18 for all assertions. If λ ∈ σR(A), then

X ̸= ran(A − λ) = ker
(

A − λ)′
)
= ker(A′ − λ)⊥.

But then ker(A′ − λ) ̸= {0} and λ ∈ σP(A′), so σR(A) ⊆ σP(A′).

Conversely, if λ ∈ σP(A′), then

{0} ̸= ker(A′ − λ) = ran(A − λ)⊥,

hence ran(A − λ) cannot be dense in X. Thus σP(A′) ⊆ σR(A). The same argument
works for σP(A) ⊆ σR(A′).

If X is reflexive, then ker(A − λ)⊥ = ran(A′ − λ) and the first argument applies
again.
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6.1 Spectrum of compact operators

We now concentrate on the spectrum σ(A) of a compact operator A ∈ L(X). It will
turn out that this is of a particularly interesting structure as the following main theo-
rem, sometimes called Riesz-Schauder theory:

Theorem 6.6 (Riesz-Schauder). Let A ∈ L(X) be a compact operator and suppose that
X is infinite-dimensional. Then we have the following:

a) 0 ∈ σ(A),

b) σ(A) \ {0} = σP(A) \ {0},

c) if (λk) ⊆ σ(A) is a sequence of distinct scalars such that λk → λ, then λ = 0.

Proof. a) If 0 /∈ σ(A), then A is bijective; in particular, I = AA−1 is compact
because it is a composition of a continuous and a compact operator. But then
IB(0, 1) = B(0, 1) is compact and this is a contradiction to X being infinite-
dimensional by Proposition 3.8.

b) Let λ ∈ σ(A) \ {0}. Suppose that λ was not eigenvalue, so λ /∈ σP(A). Then
ker(A − λ) = {0}. On the other hand, A − λ = −λ(I − λ−1A) and we have the
Fredholm alternative for I − λ−1A. Thus, by Theorem 4.26, ran(A − λ) = X.
But then A − λ is bijective and λ ∈ ρ(A), and this is a contradiction.

c) Without loss of generality, we can assume that λk ̸= 0 for all k ∈ N. Then
(λk) ⊆ σP(A). Pick eigenvectors (ek) of (λk) and set Ek := span{e1, e2, . . . , ek}.
We claim that Ek ⊊ Ek+1 for each k ∈ N.

We prove this by induction on k. Suppose that (e1, . . . , ek) are linearly indepen-
dent. Assume further that ek+1 ∈ Ek, so Ek+1 = Ek. Then there are coefficients
α1, . . . , αk ∈ K such that ek+1 = ∑k

i=1 αiei. By construction,

Aek+1 =
k

∑
i=1

αiλiei and Aek+1 = λk+1ek+1 =
k

∑
i=1

αiλk+1ei.

Hence αi(λi − λk+1) = 0 , which implies αi = 0 for i = 1, . . . , k. This is a contra-
diction, so Ek ⊊ Ek+1 for all k ∈ N.

Now the Riesz lemma (exercises) strikes again: There is a sequence (xk) such
that xk ∈ Ek with ∥xk∥ = 1 and dist(xk, Ek−1) for all k ≥ 2. Then we have

Eℓ−1 ⊊ Eℓ ⊆ Ek−1 ⊊ Ek (2 ≤ ℓ < k).
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Further (A − λk)Ek ⊆ Ek−1 and so∥∥∥∥Axk
λk

− Axℓ
λℓ

∥∥∥∥ =

∥∥∥∥Axk − λkxk
λk

− Axℓ − λℓuℓ

λℓ
+ xk − xℓ

∥∥∥∥
≥ dist(xk, Ek−1) ≥

1
2

But (Axk) has a convergent subsequence because A is compact. Hence, if λk →
λ ̸= 0, then the left-hand side converges to 0, which is a contradiction.

Remark 6.7. A common reformulation of the third assertion in Theorem 6.6 is that
A ∈ L(X) is compact, then one of the following cases is true:

• σ(A) = {0},

• σ(A) \ {0} is a finite set,

• σ(A) \ {0} is a sequence converging to 0.

Indeed, the sets Fk := σ(A)∩ {λ ∈ K : |λ| ≥ 1/k} are either empty or finite: If they
had infinitely many (distinct) elements, then there would be a sequence in Fk which
converges to some element of Fk. (Recall that σ(A) is compact by Proposition 6.2!)
But this contradicts Theorem 6.6. Thus if there are infinitely many elements in
σ(A) \ {0} then we can arrange them to be a sequence going to 0. (For every k,
pick up the finite number of elements in Fk \ Fk+1; this is a countable collection of
finitely many elements, so countable!)

6.2 Spectral theorem for normal operators

We will now come to our final main result in spectral theory. It will be a “diagonal-
ization” result for compact normal operators on Hilbert spaces. To this end we fix a
Hilbert space H for the rest of this section.

First, we strengthen the inclusion of the spectrum of a bounded linear operator com-
pared to Proposition 6.2:

Proposition 6.8 (Spectrum in numerical range). Let A ∈ L(H). Then σ(A) ⊆ W(A)
where the numerical range W(A) of A is defined by

W(A) :=
{
(Ax, x) : x ∈ H, |x| = 1

}
.
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More precisely, if λ /∈ W(A), then λ ∈ ρ(A) with

∥R(λ, A)∥ ≤ 1
dist(λ, W(A))

.

Proof. Suppose that λ /∈ W(A) and let α = dist(λ, W(A)). Then we have

α ≤
∣∣(Ax, x)− λ

∣∣ = ∣∣(Ax − λx, x
)
| (|x| = 1)

But this means that A−λ is positive definite (recall (5.9)) and the Lax-Milgram lemma
(Theorem 5.10) implies that A − λ is bijective with ∥R(λ, A)∥H→H ≤ α−1.

Remark 6.9. a) From the Cauchy-Schwarz inequality it is immediately clear
that W(A) ⊆ B(0, ∥A∥), so Proposition 6.8 is stronger than Proposition 6.2.

b) The numerical range W(A) is an interesting object with many useful proper-
ties. We mention for instance the surprising fact that it is convex.

The abstract spectrum inclusions σ(A) ⊆ W(A) ⊆ B(0, ∥A∥) of a bounded linear
operator A are not sharp at all: Consider H = C2 and A(x, y) := (y, 0), then σ(A) =
{0}, but W(A) = 1/2 and ∥A∥ = 1. For a complex Hilbert space H and a normal
operator A, the estimate turns out to be sharp. We call a bounded operator A normal
if AA⋆ = A⋆A.

Proposition 6.10. Let A ∈ L(H) be a normal operator. Then

max
{
|λ| : λ ∈ σ(A)

}
= ∥A∥.

Note that the foregoing Proposition 6.10 also implies that there exists x ∈ H with
|x| = 1 such that (Ax, x) = ∥A∥. Having Proposition 6.10 at hand, we can now go for
the diagonalization main theorem on a separable Hilbert space:

Theorem 6.11 (Spectral theorem for normal compact operators). Let H be a separable
Hilbert space over K = C and let A be a compact normal operator on H. Then there exists
an ONB of H composed of eigenvectors of A.

Proof. We already know that σ(A) \ {0} = σP(A). (Theorem 6.6!) Let (λk) be the
(distinct) sequence of all nonzero eigenvalues of A. Moreover, set λ0 = 0 and

X0 := ker(A), Xk := ker(A − λk), (k ∈ N).
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From the Fredholm alternative theorem (Theorem 4.26) we have 0 < dim Xk < ∞.
We claim that Xk ⊥ Xℓ for k ̸= ℓ and that span(

⋃∞
k=0 Xk) is dense in H.

To this end, note that if A is normal, then

ker(A − λ) = ker(A⋆ − λ) (λ ∈ C). (6.2)

(Exercise.) Hence, if xk ∈ Xk and xℓ ∈ xℓ, then

λk(xk, xℓ) = (Axk, xℓ) = (xk, A⋆xℓ) = (xk, λℓ) = λℓ(xk, xℓ).

If k ̸= ℓ, then this can only be true if (xk, xℓ) = 0. So Xk ⊥ Xℓ.

Moreover, set Y = span(
⋃∞

k=0 Xk). We show that Y is dense in H. By construction,
AXk ⊆ Xk, and by (6.2), A⋆Xk ⊆ Xk. Thus A⋆Y ⊆ Y. But then we also have AY⊥ ⊆ Y⊥:
If z ∈ Y⊥, then (Az, y) = (z, A⋆y) = 0 for all y ∈ Y, since A⋆y ∈ Y. Thus the restriction
A to Y⊥ is meaningful and still a normal compact operator. We call it A0 and claim
that σ(A0) = {0}.

Suppose not. Then there exists an eigenvalue µ ∈ σ(A0) with an eigenvector z ∈ Y⊥.
Clearly, µ must also be an eigenvalue of A, so µ = λk for some k ∈ N. Thus z ∈
Xk ∩ Y⊥ ⊆ Y ∩ Y⊥ = {0} and this is a contradiction.

So σ(A0) = {0}. By Proposition 6.10 this means that A0 = 0. In particular, Y⊥ ⊆ X0 ⊆
Y and by Proposition 5.7 this can only happen if Y⊥ = {0}. Thus Y is dense in H.

Finally, pick an ONB in each space Xk for k ∈ N0. For k ≥ 1, this is immediate since
dim Xk < ∞. For X0, we use that H and thus also X0 is separable, hence it admits an
ONB by Proposition 5.13. The union of all those ONBs is the object we want.

Note that the eigenvalues in Theorem 6.11 will in general be complex! Since by defi-
nition σ(A) ⊆ K, Theorem 6.11 is not true for K = R without further ado. We enforce
the real case by strengthening the structural assumption on A from normal to selfad-
joint. Recall that A ∈ L(H) is selfadjoint if A = A⋆ which clearly implies that A is
normal.

The reasoning is the following: If A ∈ L(H) is selfadjoint, then

(Ax, x) = (x, Ax) = (Ax, x) (x ∈ H),

so σ(A) ⊆ W(A) ⊆ R by Proposition 6.8. We thus obtain the following real case of
Theorem 6.11:

Theorem 6.12 (Spectral theorem for selfadjoint compact operators). Let H be a sep-
arable Hilbert space over K = R and let A be a compact normal operator on H. Then there
exists an ONB of H composed of eigenvectors of A.

The proof is exactly the same as for Theorem 6.11.
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Corollary 6.13 (Diagonalization). In the situation of either Theorem 6.11 or Theo-
rem 6.12, if (ek) is the ONB of eigenvectors of A, then we have

Ax =
∞

∑
k=0

λk(x, ek) ek (x ∈ H).

Proof. Recall (6.2) from the proof of Theorem 6.11, so ker(A − λ) = ker(A⋆ − λ) for
any λ ∈ K since A is a normal operator. Thus,

Ax =
∞

∑
k=0

(Ax, ek)ek =
∞

∑
k=0

(x, A⋆ek)ek =
∞

∑
k=0

(x, λkek)ek =
∞

∑
k=0

λk(x, ek)ek (x ∈ H).

This is exactly the diagonalization of A.

Let us finally note that there exist generalizations of the foregoing diagonalization
theorems to unbounded operators. Already the spectrum of bounded operators is much
more complicated than the one of compact operators, which, as we have seen, consists
essentially of eigenvalues only. If one wants to consider unbounded operators, one in
addition needs to very carefully define what is meant by normal or selfadjoint in this
case, since in general dom(A) and dom(A⋆) need not agree at all. Unfortunately, this
is out of scope for these lecture notes.

7 Sobolev spaces

In this penultimate section we establish a class of suitable function spaces to consider
elliptic PDEs in. Fix an open set Ω ⊆ Rd.

In fact, there is a lot of classical theory for elliptic PDEs in Hölder spaces C0,α(Ω)
which is very well rounded and useful in many areas. However, the Hölder spaces
are not very nice from a functional-analytic point of view because they are not re-
flexive. (This is a shared problem by all function spaces involving a supremum-type
norm.) This is a strong structural limitation since reflexive function spaces allow for
variational approaches related to the very natural concept of energy minimization.

The first and fundamental concept towards a suitable function space framework is
the following.
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7.1 Weak derivative

Let Λ ⊆ Rd be arbitrary but nonempty.

First, we introduce a shorthand notion for mixed derivatives of a certain order. We
say that α = (α1, . . . , αd) ∈ Nd

0 is a multi-index of order |α| := ∑d
i=1 αi. Then we

define the mixed differential operator

Dα :=
(

∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xd

)αd

.

It is immediate that Dα+β = DαDβ = DβDα for two multi-indices α, β.

Let k ∈ N0 and denote the space of k times continuously differentiable functions by

Ck(Λ) :=
{

f : Λ → K : Dα f is continuous on Λ for all |α| ≤ k
}

.

We say that a function f : Λ → K is smooth if Dα f is continuous on Λ for any multi-
index α of arbitrary order |α| ∈ N0. The associated function space is

C∞(Λ) :=
∞⋂

k=0

Ck(Λ).

Recall further that supp f :=
{

x ∈ Λ : f (x) ̸= 0
}

is the support of a function Λ → K.
Now let the space of test functions be given by

C∞
c (Λ) :=

{
f ∈ C∞(Λ), supp f compact in Λ

}
.

Note that if Λ is compact itself, then C∞
c (Λ) = C∞(Λ), but in general, this is not true.

In particular, C∞(Ω) ̸= C∞(Ω) and the same for test functions. (Consider Ω = (0, 1)
and f (x) = 1/x.)

The first result making use of test functions is a variational principle of great impor-
tance. Let L1

loc(Ω) denote all measurable functions f : Ω → K such that f ∈ L1(K) for
every compact set K ⊆ Ω. (With this notation, if Ω is bounded, then L1

loc(Ω) coincides
with L1(Ω).)

Lemma 7.1 (Fundamental lemma). Let f ∈ L1
loc(Ω) such that∫

Ω
f (x)φ(x)dx = 0 (φ ∈ C∞

c (Ω)).

Then f = 0 almost everywhere on Ω.

Now we define a weaker form of derivative.
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Definition 7.2 (Weak derivative). Let f ∈ L1
loc(Ω) and let α be a multi-index. Sup-

pose that there exists a function g ∈ L1
loc(Ω) such that∫

Ω
f (x) Dα φ(x)dx = (−1)k

∫
Ω

g(x) φ(x)dx (φ ∈ C∞
c (Ω)). (7.1)

Then we say that g is the weak (α)-derivative of f and put Dα f := g.

The fundamental lemma (Lemma 7.1) immediately implies that the weak derivative
is unique up to equality almost everywhere on Ω.

The notion of weak derivative—as for weak convergence and associated concepts—
suggests some sort of generalization of the classical derivative. It requires only that an
(|α|-fold) integration by parts formula holds true for f ∈ L1

loc(Ω) instead of a point-
wise limit as in the classical derivative. (Note that φ ∈ C∞

c (Ω) implies that φ↾∂Ω = 0
since the support of φ is compactly included in Ω.) More precisely, if k = 1 and αi = 1,
then it is just the requirement that∫

Ω
f (x)

∂φ(x)
∂xi

dx = −
∫

Ω

∂ f (x)
∂xi

φ(x)dx (φ ∈ C∞
c (Ω)).

In particular, we immediately see that if the (classical) derivatives Dα f exist and are
continuous, then Dα f coincides with the weak derivative g, so it is appropriate to
use the same notation also for the weak derivative g = Dα f . But there are functions
which are not classically differentiable but which admit a weak derivative, such as
f (x) := max(0, x) considered on any open interval Ω = (a, b) with a < 0 < b. There
we have∫

Ω
f (x)φ′(x)dx =

∫ b

0
xφ′(x)dx = −

∫ b

0
φ(x)dx = −

∫ b

a
g(x)φ(x)dx (φ ∈ C∞

c (Ω))

with g(x) = H(x), the Heaviside function

H(x) =

{
0 if x < 0,
1 if x ≥ 0.

Analogously, the weak derivative of the absolute value function x 7→ |x| is given by
x 7→ H(x)− H(−x). However, the Heaviside function itself does not admit a weak
derivative due to its jump in 0.

Note that the foregoing functions are in fact smooth almost everywhere, in this case,
the exceptional set is just the single point {0}. Indeed one can push this even further,
for instance,

f (x) :=

{
0 if x ∈ Q,
2 + sin(x) if x ∈ R \ Q
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is nowhere smooth but admits the weak derivative g(x) := cos(x). (Nota bene |Q| = 0
however!)

We say that a sequence ( fk) converges to f in L1
loc(Ω) if fk → f in L1(K) for every

compact subset K ⊆ Ω. With this notion, the weak derivative is closed in the follow-
ing useful sense.

Lemma 7.3. Let ( fk) ⊆ L1
loc(Ω) and suppose that for some multi-index α, the weak

derivatives (Dα fk) exist for all k ∈ N. If fk → f and Dα fk → g in L1
loc(Ω), then

g = Dα f .

Proof. For every φ ∈ C∞
c (Ω), the support supp φ is compact in Ω by construction,

and φ, Dα φ ∈ C(supp φ). Thus, fkDα φ → f Dα φ and Dα fk φ → gφ in L1(supp φ), and
we find∫

Ω
g(x)φ(x)dx =

∫
supp φ

g(x)φ(x)dx = lim
k→∞

∫
supp φ

Dα fk(x)φ(x)dx

= lim
k→∞

(−1)|α|
∫

supp φ
fk(x)Dα φ(x)dx = (−1)|α|

∫
Ω

f (x)Dα φ(x)dx

for every φ ∈ C∞
c (Ω).

Just as for classical derivatives, a function with weak derivative zero almost every-
where is also constant almost everywhere.

Lemma 7.4. Let Ω be connected and let f ∈ L1
loc(Ω). If Dα f = 0 almost everywhere on

Ω for any multi-index α with |α| = 1, then f is constant almost everywhere.

The proof uses the highly useful and very nice theory of convolution and mollifiers.
Unfortunately, dealing with this topic properly is out of scope for this lecture. The
interested reader is invited to consult the textbooks underlying these lecture notes.

7.2 Bascis in Sobolev spaces

Fix a number 1 ≤ p ≤ ∞ and k ∈ N. The fundamental definition of the function
space of all functions with weak derivatives in Lp(Ω) is as follows:

Definition 7.5 (Sobolev space). Define the Sobolev space

Wk,p(Ω) :=
{

f ∈ L1
loc(Ω) : Dα f ∈ Lp(Ω) for all |α| ≤ k

}
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and equip it with the norm

∥ f ∥Wk,p(Ω) :=
(

∑
|α|≤k

∫
Ω

∣∣Dα f (x)
∣∣p dx

)1/p
(1 ≤ p < ∞),

∥ f ∥Wk,∞(Ω) := ∑
|α|≤k

ess sup
x∈Ω

∣∣Dα f (x)
∣∣.

Define further the subspaces

Wk,p
0 (Ω) := C∞

c (Ω)
∥·∥

Wk,p(Ω) .

It is obvious that C∞
c (Ω) ⊆ Wk,p(Ω), so the definition of Wk,p

0 (Ω) makes sense. We
will see later that Wk,p

0 (Ω) corresponds to the subspace of functions in Wk,p(Ω) for
which Dα f ↾∂Ω = 0 in a generalized sense, for all |α| ≤ k − 1. In particular, if k = 1,
then we will have f ↾∂Ω = 0.

For p = 2, the we give the Sobolev spaces a particular name:

Definition 7.6 (Sobolev-Hilbert space). The Sobolev-Hilbert space Hk(Ω) := Wk,2(Ω)
is endowed with the inner product

( f , g)Hk(Ω) := ∑
|α|≤k

∫
Ω

Dα f (x) Dαg(x)dx ( f , g ∈ Hk(Ω)). (7.2)

We also set Hk
0(Ω) := Wk,2

0 (Ω).

Theorem 7.7. The Sobolev spaces Wk,p(Ω) are Banach spaces which are separable for
1 ≤ p < ∞ and reflexive for 1 < p < ∞. For p = 2, they are Hilbert spaces endowed
with the inner product (7.2).

Proof. It is elementary to prove that Wk,p(Ω) is a normed vector space since the norm
as in Definition 7.5 is derived from the Lp(Ω) norms.

For completeness, we argue as follows. Let N be the number of multi-indices α of
order |α| ≤ k. Then

D : Wk,p(Ω) → Lp(Ω)N, f 7→
{

Dα f : |α| ≤ k
}

is a linear isometry from Wk,p(Ω) into Lp(Ω)N if we equip Lp(Ω)N with the norm

∥(g1, . . . , gN)∥Lp(Ω)N :=
( N

∑
k=1

∥gk∥
p
Lp(Ω)

)1/p
.
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But by Lemma 7.3, ran(D) is a closed subspace of Lp(Ω)N and thus a Banach space.
Since D is an isometry between Wk,p(Ω) and ran(D), so is Wk,p(Ω). In particular,
ran(D) and thus also Wk,p(Ω) is separable for 1 ≤ p < ∞ and reflexive for 1 < p < ∞
(Lemma 3.12).

The fact that a Sobolev function admits weak derivatives which are again in Lp(Ω)
has quite some intriguing consequences. In one space dimension d = 1, if Ω = (a, b)
is an interval, then f ∈ W1,1(a, b) already implies that f is absolutely continuous. We
use the convention that C0,0([a, b]) = C([a, b]).

Lemma 7.8. Let f ∈ W1,1(a, b) with a < b and let f ′ ∈ L1(a, b) be its weak derivative.
Then there exists an absolutely continuous function F ∈ C([a, b]) such that F = f almost
everywhere on (a, b) and

f ′(x) = lim
h→0

F(x + h)− F(x)
h

(a.a. x ∈ (a, b)). (7.3)

If f ∈ W1,p(a, b) with 1 < p ≤ ∞, then F is Hölder continuous with F ∈ C0,1− 1
p ([a, b]);

for p = ∞ this means that it is Lipschitz continuous. Moreover, for every 1 ≤ p ≤ ∞
there exists a constant Cp ≥ 0 such that

∥F∥C0,1−1/p([a,b]) ≤ Cp∥ f ∥W1,p(a,b) ( f ∈ W1,p(a, b)),

that is,
W1,p(a, b) ↪→ C0,1− 1

p ([a, b]).

Recall that C0,1− 1
p ([a, b]) was compactly embedded into C0,α([a, b]) for 0 ≤ α < 1 −

1/p. The last statement in Lemma 7.8 thus shows that W1,p(Ω) is also compactly
embedded in these spaces. In particular, every bounded sequence in W1,p(Ω) has a
uniformly convergent subsequence!

Lemma 7.8 essentially describes the full situation for d = 1. In more space dimensions
d > 1, the behavior of Sobolev functions is much more complicated and interesting.
In the exercises we show that the function f : B(0, 1) → R given by f (0) = 0 and

f (x) := |x|−γ =
( d

∑
k=1

|xi|2
)− γ

2
(0 < |x| < 1)

is in W1,p(B(0, 1)) if and only if p < d and 0 < γ < d−p
p . (Compare the condition

on p with the situation for d = 1 in Lemma 7.8.) This function is continuously differ-
entiable on B(0, 1) \ {0} but unbounded as |x| → 0 so there is to no hope to recover
good behavior there. This shows that we cannot even expect Sobolev functions to be
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bounded in general, not to speak of continuous. It will however turn out that this is
the case if p > d/k.

Another result that we only mention but not state or prove formally is that Sobolev
functions are continuous on almost every line parallel to the coordinate axes.

Also, while Sobolev functions in general might be singular, we can always approxi-
mate them by smooth functions.

Proposition 7.9 (Approximation by smooth functions). Let 1 ≤ p < ∞. Then
C∞(Ω) ∩ Wk,p(Ω) is dense in Wk,p(Ω), that is, for every function f ∈ Wk,p(Ω) and
every ε > 0 there exists gε ∈ C∞(Ω) such that ∥ f − gε∥Wk,p(Ω) < ε.

It is worthwhile to note that by definition of C∞(Ω), smooth functions from this space
may also become unbounded as they approach the boundary ∂Ω.

Finally, we mention an interesting estimate which will be of crucial importance for
the treatment of elliptic PDEs in the next section. It concerns the question whether we
can bound the Lp(Ω) norm of f by the norm of a (first order) weak derivative of f .
Clearly this can only work for non-constant functions. We exclude them by consider-
ing W1,p

0 (Ω).

Proposition 7.10 (Poincaré inequality). Let Ω be contained in a slab, that is, there exists
a coordinate i ∈ {1, . . . , d} and a, b ∈ R such that xi ∈ (a, b) for every x ∈ Ω. Consider
1 ≤ p < ∞. Then

∥ f ∥Lp(Ω) ≤ p(b − a)∥Dei f ∥Lp(Ω) ( f ∈ W1,p
0 (Ω)).

Proof. Without loss of generality, we suppose that i = 1. We split x = (x1, x′) ∈ Ω.

It is sufficient to prove the claim for 0 ̸= f ∈ C∞
c (Ω) due to the definition of W1,p

0 (Ω)
and approximation. For g(x) := | f (x)|p we have

| f (x)|p = | f (x1, x′)|p =
∫ x1

a
De1 g(s, x′)ds

For simplicity we consider f to be defined on Rd by extension by zero outside of Ω.
So, using the Fubini theorem,

∥ f ∥p
Lp(Ω)

=
∫

Ω
| f (x)|p dx =

∫
Rd

| f (x)|p dx =
∫ b

a

∫
Rd−1

| f (t, x′)|p dx′ dt

=
∫

Rd−1

∫ b

a

∫ t

a
De1 g(s, x′)ds dt dx′.
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Now we rely on a useful integration by parts:

∫ b

a
1 ·

∫ t

a
De1 g(s, x′)ds dt =

[
t ·

∫ t

a
De1 g(s, x′)ds

]t=b

t=a
−

∫ b

a
t · De1 g(t, x′)dt

and [
t ·

∫ t

a
De1 g(s, x′)ds

]t=b

t=a
=

∫ b

a
b · De1 g(s, x′)ds.

Overall

∥ f ∥p
Lp(Ω)

=
∫

Rd−1

∫ b

a
(b − t) · De1 g(t, x′)dt dx′ ≤ (b − a)

∫
Rd

∣∣De1 g(x)
∣∣dx.

It is time to insert the actual formula for De1 g:

De1 g(x) = p| f (x)|p−2 Re
(

f (x)De1 f (x)
)
,

so we obtain, with Cauchy-Schwarz and the Hölder inequality ( 1
p +

p−1
p = 1),

∥ f ∥p
Lp(Ω)

≤ p(b − a)
∫

Rd
| f (x)|p−1∣∣De1 f (x)

∣∣dx

≤ p(b − a)∥ f ∥p−1
Lp(Ω)

∥∥De1 f
∥∥

Lp(Ω)
.

This is the claim for f ∈ C∞
c (Ω).

If Ω is in fact bounded in all directions, then from Proposition 7.10 we get an es-
timate of f in terms of the Lp norm of (the modulus of) its weak gradient ∇ f =
(De1 f , . . . , Ded f ).

Corollary 7.11 (Poincaré inequality I). Let Ω be bounded and 1 ≤ p < ∞. Then there
exists a constant C depending on p, d and Ω such that

∥ f ∥Lp(Ω) ≤ C∥∇ f ∥Lp(Ω) ( f ∈ W1,p
0 (Ω)). (7.4)

In particular,
| f |

W1,p
0 (Ω)

:= ∥∇ f ∥Lp(Ω) ( f ∈ W1,p
0 (Ω))

is an equivalent norm on W1,p
0 (Ω).

Proof. Suppose that Ω ⊆ [a1, b1]× · · · × [ad, bd]. We can apply Proposition 7.10 in all
directions i = 1, . . . , d. Write f = 1

d ∑d
k=1 f and set δ := maxi=1,...,d(bi − ai)/d. Then
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there exist constants C1,p and Cp,2 such that

∥ f ∥Lp(Ω) ≤ δp
d

∑
i=1

∥∥Dei f
∥∥

Lp(Ω)
≤ δp C1,p

( d

∑
i=1

∥∥Dei f
∥∥p

Lp(Ω)

) 1
p

= δp C1,p

(∫
Ω

d

∑
i=1

∣∣Dei f (x)
∣∣p dx

) 1
p

≤ δp C1,p

(∫
Ω

Cp
p,2

[ d

∑
i=1

∣∣Dei f (x)
∣∣2] p

2
dx

) 1
p

= δp C1,pCp,2

(∫
Ω

∣∣∇ f (x)
∣∣p dx

) 1
p
.

The constants C1,p and Cp,2 refer to the constants such that ∥ · ∥1 ≤ C1,p∥ · ∥p and
∥ · ∥p ≤ Cp,2∥ · ∥2 on Kd.

7.3 Extension, embedding and compactness

Lemma 7.8 established that the fact that Sobolev functions have weak derivatives in a
Lebesgue space implies improved regularity properties for d = 1. On the other hand,
we have also seen that there are unbounded and discontinuous functions in W1,p(Ω)
if p < d. The precise properties of Sobolev functions are highly important in several
areas of research. The first and most important case is for Ω = Rd, the full space. We
have the two following fundamental results:

Theorem 7.12 (Morrey’s inequality). Let d < p < ∞ and set γ := 1− d/p > 0. Then
there is a constant C which depends only on p and d such that

∥ f ∥C0,γ
b (Rd)

≤ C∥ f ∥W1,p(Rd) ( f ∈ C1(Rd) ∩ W1,p(Rd)).

For the next result, we introduce the Sobolev conjugate p⋆ to 1 ≤ p < d by

p⋆ :=
dp

d − p
⇐⇒ 1

p⋆
=

1
p
− 1

d
.

Theorem 7.13 (Gagliardo-Nirenberg inequality). Let 1 ≤ p < d. Then there is a
constant C which depends only on p and d such that

∥ f ∥Lp⋆ (Rd) ≤ C∥∇ f ∥Lp(Rd) ( f ∈ W1,p(Rd)).
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Note that p⋆ > p. So even if 1 ≤ p < d, the existence of a weak derivative in Lp(Rd) of
an Lp(Rd) function implies that f is in fact more integrable. The borderline case p = d
is a bit more involved and we skip it for now.

We would like to transfer these fundamental results also to open sets Ω ̸= Rd. To this
end, it is easy to see that if Λ is another open set and Ω ⊆ Λ, then from f ∈ Wk,p(Λ)
it follows that f ∈ Wk,p(Ω). In particular, the restriction of a Wk,p(Rd) function will
always be in Wk,p(Ω).

Suppose that we have a means to reverse this restriction procedure, that is: to extend
a function f ∈ Wk,p(Ω) to a function E f ∈ Wk,p(Rd) such that E f ↾Ω = f almost
everywhere on Ω. Then we could—now for k = 1—proceed as follows, with X either
a Hölder space (Theorem 7.12) or a Lebesgue space (Theorem 7.13), depending on the
magnitude of p compared to d:

f ∈ W1,p(Ω) → E f ∈ W1,p(Rd) ↪→ X(Rd) → E f ↾Ω = f ∈ X(Ω), (7.5)

and if in fact E ∈ L(W1,p(Ω) → W1,p(Rd)):

∥ f ∥X(Ω) ≤ ∥E f ∥X(Rd) ≤ C∥E f ∥W1,p(Rd) ≤ C∥E∥W1,p(Ω)→W1,p(Rd)∥ f ∥W1,p(Ω).

In this way we obtain the analogues of Theorems 7.12 and 7.13 for Ω. However such
an extension operator as claimed before does not exist for arbitrary open sets Ω. (Ex-
ercise.) A notable particular case is the following:

Lemma 7.14 (Zero extension). The extension by zero E0 defines a bounded linear exten-
sion operator Wk,p

0 (Ω) → Wk,p(Rd) for 1 ≤ p ≤ ∞.

Proof. Let f ∈ C∞
c (Ω). Then the supp f is compactly contained in Ω, in particular,

there is ε > 0 such that dist(x, ∂Ω) ≥ ε for all x ∈ supp f . Hence f (y) = 0 for all
y ∈ Ω such that dist(y, ∂Ω) < ε and E0 f ∈ C∞

c (Rd) ⊆ Wk,p(Rd) for all 1 ≤ p ≤ ∞
with

∥E0 f ∥Wk,p(Rd) = ∥ f ∥Wk,p(Ω).

Since C∞
c (Ω) is by definition dense in Wk,p

0 (Ω), the foregoing equality extends to all
f ∈ Wk,p

0 (Ω) by continuity.

To have an extension operator for the full Sobolev space Wk,p(Ω), we will have to
pose assumptions on Ω which are related to boundary regularity. To this end we
only consider bounded sets in the following. (Unbounded sets can also be dealt with
but have some cumbersome uniformity requirements.)

The idea is to require that, locally at its boundary, Ω can be transformed into a nice
and smooth object; we choose the lower half ball. The quality of ∂Ω is then given by
the regularity properties of the associated transformations.
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Definition 7.15 (Boundary regularity). Let Ω be bounded. We say that Ω has a
C1-boundary, or ∂Ω ∈ C1, if for every x ∈ ∂Ω there exists a radius r and a
C1-diffeomorphism Φ : B(x, r) → B(0, 1) such that Φ(B(x, r) ∩ Ω) = B(0, 1) ∩
(Rd−1 × R−), the lower half ball.

The idea how to obtain an extension operator from such a boundary regularity prop-
erty is the following: If Ω has a C1-boundary, then one can consider an Wk,p(Ω) func-
tion f locally in B(x, r) ∩ Ω for every boundary point x ∈ ∂Ω. Using the transfor-
mation Φ, one obtains a Wk,p function f ◦ Φ on the lower half ball. (Here a certain
minimum regularity of Φ is necessary.) We reflect the function over the mid-plate of
B(0, 1) to construct a Wk,p(B(0, 1)) function which can then be transferred back by
Φ−1 to B(x, r). This way we have extended f across B(x, r) ∩ ∂Ω to the whole B(x, r).
In order to patch together all these local extensions, one needs to make use of a parti-
tion of unity. (Of course all of the foregoing can and needs to be argued properly.)

Proposition 7.16 (Extension for C1-boundary). Let Ω be bounded with C1-boundary.
Let Λ ⊆ Rd be another bounded open set such that Ω ⊂ Λ. Then there exists a bounded
linear extension operator E ∈ L(Wk,p(Ω) → Wk,p(Rn)), that is, such that E f ↾Ω = f
almost everywhere on Ω. Moreover, supp E f ⊂ Λ for every f ∈ Wk,p(Ω).

Now we can actually follow the strategy laid out in (7.5) to obtain the following most
fundamental result:

Theorem 7.17 (Sobolev embedding). Let Ω be bounded with C1-boundary.

(a) If 1 ≤ p < d, then

W1,p(Ω) ↪→ Lp⋆(Ω) ↪→ Lq(Ω) (q ∈ [1, p⋆]).

(b) If p = d, then
W1,p(Ω) ↪→ Lq(Ω) (q ∈ [1, ∞)).

(c) If d < p ≤ ∞, then

W1,p(Ω) ↪→ C0,1− d
p (Ω) ↪→ C0,α(Ω) (α ∈ [0, 1 − d

p ]).

The assertions stays true without any boundary regularity assumption for Ω if one re-
places W1,p(Ω) by W1,p

0 (Ω).

Proof. With the strategy as in (7.5) we obtain the first embeddings for p ̸= d us-
ing Lemma 7.14 and Proposition 7.16 from Theorems 7.12 and 7.13. The second em-
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beddings for p ̸= d follow from boundedness of Ω by the Hölder inequality and an
elementary calculation with the Hölder seminorm. Finally, the Hölder inequality also
shows that W1,d(Ω) ↪→ W1,d−ε(Ω) for any ε > 0. Since (d − ε)⋆ ↗ ∞ for ε ↘ 0, the
assertion for p = d follows from the case 1 ≤ p < d.

The existence of an extension operator in particular implies that Wk,p(Ω) coincides
with the set of all restrictions Wk,p(Rd)↾Ω. A consequence of this is that then smooth
functions up to the boundary are dense in Wk,p(Rd) as well. (Compare this result
to Proposition 7.9!)

Lemma 7.18. Let Ω be bounded with C1-boundary and let 1 ≤ p < ∞. Then C∞(Ω) is
dense in Wk,p(Rd).

Proof. Let f ∈ Wk,p(Ω). Then E f ∈ Wk,p(Rd) and by Proposition 7.9 there exists a
sequence (Gk) ⊆ Wk,p(Rd)∩ C∞(Rd) such that Gk → E f in Wk,p(Rd). Denote (gk) :=
(Gk↾Ω) ∈ C∞(Ω) ⊂ Wk,p(Ω). Then

∥ f − gk∥Wk,p(Ω) ≤ ∥E f − Gk∥Wk,p(Rd) −→ 0.

The Sobolev embeddings in Theorem 7.17 are stated just for first-order Sobolev spaces.
In fact, a similar result holds true for Wk,p(Ω) with k > 1 which follows from a
leapfrogging argument. (Exercise.) To this end, we consider the net smoothness α :=
k − d

p . For α > 0, we split α in its integer and fractional part α = m + γ with m ∈ N0

and 0 ≤ γ < 1. Then we have the following:

Lemma 7.19 (Higher order Sobolev embedding). Let Ω be bounded with C1-boundary.

(a) If α < 0, then

Wk,p(Ω) ↪→ Lq(Ω)
1
q

:=
1
p
− k

d
.

(b) If α = 0, then
Wk,p(Ω) ↪→ Lq(Ω) (q ∈ [1, ∞)).

(c) If α > 0 and γ > 0, then

Wk,p(Ω) ↪→ Cm,γ(Ω).

(d) If α > 0 and γ = 0, then

Wk,p(Ω) ↪→ Cm−1,β(Ω) (β ∈ [0, 1)).
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The assertions stays true without any boundary regularity assumption for Ω if one re-
places Wk,p(Ω) by Wk,p

0 (Ω).

Let us go back to k = 1. From the Arzelà-Ascoli theorem combined with Sobolev
embedding (Theorem 7.17) we already know that if d < p ≤ ∞, then W1,p(Ω) ↪→
C0,α(Ω) compactly if 0 ≤ α < 1 − d/p for Ω bounded with C1-boundary. (Or for
W1,p

0 (Ω).) In particular, W1,p(Ω) ↪→ Lp(Ω) compactly. An analogous statement for
p < d follows from the following most important theorem.

Theorem 7.20 (Rellich-Kondrachov). Let Ω be bounded and let 1 ≤ p < d. Then
the Sobolev embedding W1,p

0 (Ω) ↪→ Lq(Ω) for q ∈ [1, p⋆) is compact. If Ω has a C1-
boundary, then the same holds true for W1,p(Ω).

Corollary 7.21. Let Ω be bounded and 1 ≤ p ≤ ∞. Then W1,p
0 (Ω) ↪→ Lp(Ω) com-

pactly. If Ω has a C1-boundary, then the same holds true for W1,p(Ω).

A consequence of the Rellich-Kondrachov theorem is another version of the Poincaré
inequality (Proposition 7.10). This time we exclude constant functions by enforcing
mean zero over Ω:

Proposition 7.22 (Poincaré inequality II). Let Ω be bounded and connected with C1-
boundary and let 1 ≤ p ≤ ∞. Then there exists a constant C depending on p, d and Ω
such that ∥∥∥ f − 1

|Ω|

∫
Ω

f (x)dx
∥∥∥

Lp(Ω)
≤ C∥∇ f ∥Lp(Ω) ( f ∈ W1,p(Ω)).

Proof. Suppose the assertion was false. Then there exists a sequence ( fk) in W1,p(Ω)
such that ∥∥∥ fk −

1
|Ω|

∫
Ω

fk(x)dx
∥∥∥

Lp(Ω)
> k∥∇ fk∥Lp(Ω) (k ∈ N).

Put

gk :=
fk − 1

|Ω|
∫

Ω fk(x)dx∥∥∥ fk − 1
|Ω|

∫
Ω fk(x)dx

∥∥∥
Lp(Ω)

(k ∈ N).

Then
∥gk∥Lp(Ω) = 1,

1
k
> ∥∇gk∥Lp(Ω) and

1
|Ω|

∫
Ω

gk(x)dx = 0.
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Hence (gk) is a bounded sequence in W1,p(Ω) with |∇gk| → 0 in Lp(Ω). By the
Rellich-Kondrachov theorem and its corollary (Corollary 7.21), there is a subsequence
of (gk) which converges in Lp(Ω) with limit g. (We do not relabel subsequences for
this proof.) So we have gk → g and ∇gk → 0 in Lp(Ω). From Lemma 7.3 it follows
that g ∈ W1,p(Ω) with ∇g = 0. But then Lemma 7.4 says that g = c ∈ K must be
constant almost everywhere. (Here we use that Ω is connected.) Indeed, it must be
zero, since

0 = lim
k→∞

1
|Ω|

∫
Ω

gk(x)dx =
1
|Ω|

∫
Ω

g(x)dx = c.

But clearly this is a contradiction since

∥g∥Lp(Ω) = lim
k→∞

∥gk∥Lp(Ω) = 1.

8 Linear elliptic partial differential equations

Fix a bounded open set Ω ⊆ Rd for the following. We consider the linear second-
order partial differential operator L defined formally by

Lu(x) := −
d

∑
i,j

∂

∂xj

(
aij(x)

∂u(x)
∂xi

)
+

d

∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)y(x) (x ∈ Ω) (8.1)

acting on a function u : Ω → K, for given (measurable) functions aij, bi, c : Ω → R,
where i, j ∈ {1, . . . , d}. (We only consider real coefficients.)

The associated (Dirichlet) boundary value problem is

Lu(x) = f (x) (x ∈ Ω),
u(x) = 0 (x ∈ ∂Ω)

}
(8.2)

with some measurable function f : Ω → K. We need to include the boundary con-
dition in (8.2) if there is to be any hope to obtain unique solutions for Lu = f ; this
is already the case for ordinary differential equations and the same principle applies
here.

8.1 Weak formulation

If the coefficients in (8.1) and the right-hand side in (8.2) are regular, say, aij ∈ C1(Ω)

and bi, c, f ∈ C(Ω), then one could hope for a regular solution y ∈ C2(Ω) such
that (8.1) and (8.2) would be well defined for every x ∈ Ω. Such u ∈ C2(Ω) would be
called a classical solution and there is a well developed theory for these situations.
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However, many problems applications do not admit such regular data. We will thus
only assume, from now on,

f ∈ L2(Ω) and aij, bi, c ∈ L∞(Ω; R), aij = aji a.e. on Ω.

Note that the matrix A(x) = (aij(x)) ∈ Rd×d is assumed to be real symmetric for
almost every x ∈ Ω. Clearly, (aij) will in general not admit a derivative at all, so we
need to give (8.1) and (8.2) a particular meaning, which is as follows.

Definition 8.1 (Weak solution). We say that u ∈ H1
0(Ω) is a weak solution to (8.2) if

it is satisfies the weak formulation of (8.2)

∫
Ω

[
d

∑
i,j

aij(x)
∂u(x)

∂xi

∂v(x)
∂xj

+
d

∑
i=1

bi(x)
∂u(x)

∂xi
v(x) + c(x)u(x)v(x)

]
dx

=
∫

Ω
f (x)v(x)dx (v ∈ H1

0(Ω))

The weak formulation of (8.2) is formally obtained from multiplying (8.2) by v and
integration by parts for the second-order part. The boundary integral drops out due
to the zero boundary values of v.

Note how L is a second-order differential operator, but all terms in the weak formula-
tion make perfect sense for u, v ∈ H1

0(Ω) only. This is of course all in analogy to the
definition of the weak derivative.

Remark 8.2. The Dirichlet boundary condition u = 0 on ∂Ω in (8.2) is incorporated
in the notion of weak solution as in Definition 8.1 by requiring that u ∈ H1

0(Ω)
instead of merely u ∈ H1(Ω).

A neat way to interpret the weak formulation of (8.2) is in the language of forms on
the Hilbert space H1

0(Ω). Define a : H1
0(Ω)× H1

0(Ω) → K by

a(u, v) :=
∫

Ω

[
d

∑
i,j

aij(x)
∂u(x)

∂xi

∂v(x)
∂xj

+
d

∑
i=1

bi(x)
∂u(x)

∂xi
v(x) + c(x)u(x)v(x)

]
dx.

Then it is a reformulation of Definition 8.1 to require that u ∈ H1
0(Ω) satisfies

a(u, v) = ( f , v)L2(Ω) (v ∈ H1
0(Ω)). (8.3)

This smells a lot like an opportunity to use the Lax-Milgram lemma (Theorem 5.10).
To set the stage, we first consider a particular case which can be dealt with by its
brother, the Riesz representation theorem (Theorem 5.5). Let

aij = δi=j, bi = 0, c = 1.
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Then A(x) = I, the identity matrix, and (8.2) becomes

−∆u(x) + u(x) = f (x) (x ∈ Ω),
u(x) = 0 (x ∈ ∂Ω)

}
(8.4)

with the Laplacian ∆ = ∑d
i=1

∂2

∂xixi
. In this case,

a(u, v) = (u, v)H1(Ω) (u, v ∈ H1
0(Ω)).

Lemma 8.3. For every f ∈ L2(Ω) the Laplacian boundary value problem (8.4) admits a
unique weak solution u ∈ H1

0(Ω). Moreover, the solution map L−1 : f 7→ u is a compact
operator L2(Ω) → H1

0(Ω) and thus also in L2(Ω).

Proof. Consider the embedding ι : H1
0(Ω) ↪→ L2(Ω). By the Rellich-Kondrachov theo-

rem (Corollary 7.21), this is a compact embedding. From the Schauder theorem (The-
orem 4.23) and the example in Section 4.4 we obtain that ι′ : L2(Ω)′ → H1

0(Ω)′ is also
a compact embedding.

By the Riesz representation theorem (Theorem 5.5), there is an antilinear isometry
R2 : L2(Ω)′ → L2(Ω) such that

( f , w)L2(Ω) =
〈

R−1
2 f , w

〉
L2(Ω)′,L2(Ω)

(w ∈ L2(Ω)).

Hence,

( f , v)L2(Ω) = ( f , ιv)L2(Ω) =
〈
ι′R−1

2 f , v
〉

H1
0(Ω)′,H1

0(Ω)
(v ∈ H1

0(Ω))

Again by the Riesz representation theorem (Theorem 5.5), this time for H1
0(Ω), there

is an antilinear isometry R : H1
0(Ω)′ → H1

0(Ω) such that〈
ι′R−1

2 f , v
〉

H1
0(Ω)′,H1

0(Ω)
= (v, Rι′R−1

2 f )H1
0(Ω) (v ∈ H1

0(Ω)).

But then u := Rι′R−1
2 f ∈ H1

0(Ω) is exactly the weak solution to (8.4) since

(Rι′R−1
2 f , v)H1

0(Ω) = (v, Rι′R−1
2 f )H1

0(Ω)

=
〈
ι′R−1

2 f , v
〉

H1
0(Ω)′,H1

0(Ω)
= ( f , v)L2(Ω) ( f ∈ L2(Ω)).

Further, L−1
0 : f 7→ Rι′R−1

2 f = u is linear and continuous L2(Ω) → H1
0(Ω). In fact,

since R−1
2 and R are continuous and ι′ is compact, so is L−1

0 : L2(Ω) → H1
0(Ω).
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8.2 Existence and uniqueness for uniformly elliptic operators

Now in order to transfer Lemma 8.3 to the more general differential operator L as
in (8.1), we need one more (crucial) assumption. Unlike the inner product as we had
in Lemma 8.3, the form a as in (8.3) is not always coercive. Thus, we require that the
differential operator L is uniformly elliptic in Ω: There exists a constant θ > 0 such
that

d

∑
i,j=1

aij(x)ξiξ j ≥ θ|ξ|2 for all x ∈ Ω, ξ ∈ Kd.

This means that the matrix A = (aij) ∈ Rd×d is symmetric and uniformly positive
definite. In particular, ξ⊤Aξ ∈ R for all ξ ∈ Kd and all eigenvalues of A are real and
greater or equal to θ > 0. Note that for the Laplacian as in (8.4), aij is just the identity
matrix which is trivially uniformly elliptic with θ = 1.

Let L0 be the principal part of L, that is, the second order differential operator made
of the second order terms in L:

L0u(x) := −
d

∑
i,j

∂

∂xj

(
aij(x)

∂u(x)
∂xi

)
(x ∈ Ω),

and consider the boundary value problem

L0u(x) = f (x) (x ∈ Ω),
u(x) = 0 (x ∈ ∂Ω).

}
(8.5)

Theorem 8.4. Let L0 be uniformly elliptic. Then for every f ∈ L2(Ω) the boundary value
problem (8.5) admits a unique weak solution u ∈ H1

0(Ω). Moreover, the solution map
L−1

0 : f 7→ u is a compact linear operator L2(Ω) → H1
0(Ω) and thus also on L2(Ω).

Proof. Let a0 : H1
0(Ω) → H1

0(Ω) be the sesquilinear form associated to L0. We check
that a0 satisfies the assumptions of the Lax-Milgram lemma (Theorem 5.10).

Clearly, it is a continuous sesquilinear form on H1
0(Ω)× H1

0(Ω), since

∣∣a0(u, v)
∣∣ ≤ d

∑
i,j=1

∥aij∥L∞(Ω)

∣∣ ∂u
∂xi

∣∣
L2(Ω)

∣∣ ∂v
∂xj

∣∣
L2(Ω)

≤ C|∇u|L2(Ω)|∇v|L2(Ω)

for some constant C > 0 depending on A = (aij). Here it is crucial that aij ∈ L∞(Ω).

The critical question is whether a0 is coercive. We have a0(u, u) ∈ R for all u ∈ H1
0(Ω).

Since we have assumed Ω to be bounded, the Poincaré inequality (Corollary 7.11)
says that there exists a constant CP > 0 such that

|u|L2(Ω) ≤ CP|∇u|L2(Ω) (u ∈ H1
0(Ω)).
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Morever, since L0 is assumed to be uniformly elliptic:

a0(u, u) =
∫

Ω

d

∑
i,j

aij(x)
∂u(x)

∂xi

∂u(x)
∂xj

dx ≥ θ
∫

Ω
|∇u(x)|2 dx (u ∈ H1

0(Ω)).

So, for all u ∈ H1
0(Ω):

|u|2H1(Ω) = |u|2L2(Ω) + ∥∇u∥2
L2(Ω) ≤ (1 + CP)|∇u|2L2(Ω) ≤

CP + 1
θ

a0(u, u)

and a0 is coercive on H1
0(Ω) with coercivity constant α = θ

CP+1 .

Let ι and R2 be as in the proof of Lemma 8.3. Then the weak formulation of (8.5) is

a0(u, v) = ( f , v)L2(Ω) =
〈
ι′R−1

2 f , v
〉

H1
0(Ω)′,H1

0(Ω)
(v ∈ H1

0(Ω)).

The Lax-Milgram lemma (Theorem 5.10) says that there exists a unique u ∈ H1
0(Ω)

such that the foregoing weak formulation is satisfied, and we have

|u|H1
0(Ω) ≤ α−1∥ι′R−1

2 f ∥H1
0(Ω)′ ≤

CP + 1
θ

| f |L2(Ω) ( f ∈ L2(Ω)).

In particular, L−1
0 : f 7→ u ∈ L(L2(Ω) → H1

0(Ω)) is compact, as in the proof of
Lemma 8.3.

Eigenfunction expansion

The fact that the weak solution operator L−1
0 associated to (8.5) is compact in the

Hilbert space L2(Ω) allows to start the spectral theorem machinery from Section 6.2.
We have not yet convinced ourselves that L−1

0 is normal (selfadjoint, in fact), but will
do so in the following lemma. Intuitively, we need to use that we have assumed the
coefficient matrix A = (aij) to be real and symmetric here.

Lemma 8.5. Let L0 be uniformly elliptic. Then the weak solution operator L−1
0 ∈ L(L2(Ω))

to (8.5) from Theorem 8.4 is compact, injective, and selfadjoint.

In particular, there is an ONB (ϕk) of H1
0(Ω) consisting of eigenvectors of L−1

0 . The asso-
ciated eigenvalues (λk) are real and strictly positive with limk→∞ λk = 0 and we have

L−1
0 f =

∞

∑
k=1

λk
(

f , ϕk
)

L2(Ω)
ϕk ( f ∈ L2(Ω)).
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Proof. We already know that L−1
0 ∈ L(L2(Ω)) is in fact compact. Suppose that u =

L−1
0 f = 0 for some f ∈ L2(Ω). Then

0 = a0(u, v) = ( f , v)L2(Ω) (v ∈ H1
0(Ω)).

In particular, the foregoing holds true for v ∈ C∞
c (Ω) ⊂ H1

0(Ω). But then the funda-
mental lemma (Lemma 7.1) implies that f = 0 in L2(Ω). Hence L−1

0 is injective.

We next show that L−1
0 is selfadjoint. Let f , g ∈ L2(Ω) and set u = L−1

0 f and v = L−1
0 g.

Then, because we have assumed A = (aij) to be symmetric, and u, v ∈ H1
0(Ω) are

admissible test functions for each other’s weak formulation:(
g, L−1

0 f
)

L2(Ω)
= (g, u)L2(Ω) = a0(v, u)

= a0(u, v) = ( f , v)L2(Ω) = (v, f )L2(Ω) =
(

L−1
0 g, f

)
L2(Ω)

.

Hence L−1
0 is selfadjoint on L2(Ω).

Now the spectral theorem (Theorem 6.11) shows that there is an ONB of L2(Ω) made
of eigenvectors (ϕk) ⊂ H1

0(Ω). The associated eigenvalues (λk) are real since L−1
0 is

selfadjoint and limk→∞ λk = 0 by the Riesz-Schauder theorem (Theorem 6.6) and Re-
mark 6.7. Finally, we have

1 =
(
ϕk, ϕk

)
L2(Ω)

= (L−1
0 ϕk, ϕk)L2(Ω) = a0(L−1

0 ϕk, ϕk) = λka0(ϕk, ϕk),

so λk = a0(ϕk, ϕk)
−1 > 0 since a0 was coercive.

Example: Let Ω = (0, π) ⊂ R and (L0u)(x) = −u′′(x). Then (8.5) becomes

−u′′(x) = f (x) (x ∈ (0, π)), u(0) = u(π) = 0.

One can compute the eigenvalues and associated eigenfunctions of L0 to be µk = k2

and ϕk(x) :=
√

2/π sin(kx). Clearly, λk := µ−1
k = 1/k2 are then the eigenvalues of

L−1
0 with eigenfunctions ϕk. Per Lemma 8.5, (ϕk) gives rise to an ONB of L2(Ω). (This

is exactly the example mentioned at the end of Section 5.3.) Moreover, for f ∈ L2(Ω)
we obtain the Fourier sine series representation for the weak solution u = L−1

0 f :

u(x) =
∞

∑
k=1

λk(ϕk, f )L2(0,π)ϕk(x) =
∞

∑
k=1

2
πk2

(∫ π

0
f (y) sin(ky)dy

)
sin(kx)

for x ∈ (0, π).
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8.3 General linear elliptic operators

So far we have a satisfying theory for the principal part L0 of the second order differ-
ential operator L. The crucial assumption was uniform ellipticity via a condition on
the coefficient matrix A = (aij). Going back to L, unfortunately it turns out that the
lower order terms induced by bi and c may interfere with ellipticity. For example, if
c is negative and sufficiently large, then one can find functions u ∈ H1

0(Ω) such that
a(u, u) < 0 even if L0 is uniformly elliptic. So, in full generality we cannot expect an
analogue of Theorem 8.4 for L. But we can make good use of the properties of L0 for
L uniformly elliptic by leveraging the Fredholm alternative. This we do as follows:

Put L1u := Lu − L0u. Then L1 consists of the lower-order terms of L and we have
L1 ∈ L(H1

0(Ω) → L2(Ω)) since bi, c ∈ L∞(Ω). In particular, the weak form of (8.2) is
given by

a0(u, v) = ( f , v)L2(Ω) − (L1u, v)L2(Ω) (v ∈ H1
0(Ω)),

and u ∈ H1
0(Ω) is a weak solution to (8.2) exactly when

u = L−1
0

[
f − L1u

]
⇐⇒

(
I + L−1

0 L1
)
u = L−1

0 f in H1
0(Ω).

Set K := L−1
0 L1. Then K ∈ L(H1

0(Ω)) and it is compact by Theorem 8.4. Hence the
Fredholm alternative (Theorem 4.26) applies and says that either I + K is bijective or
there exists 0 ̸= u ∈ H1

0(Ω) such that (I + K)u = 0. This yields the following full
characterization of weak solutions to (8.2).

Theorem 8.6. Let L be uniformly elliptic. Then (8.2) admits a unique weak solution u ∈
H1

0(Ω) for every f ∈ L2(Ω) if and only if we have[
a(w, v) = 0 (v ∈ H1

0(Ω))
]

=⇒ w = 0 (w ∈ H1
0(Ω)).
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